Corrosion Issues for Port Facilities

Presented by
Brian Pailes, Ph.D., P.E., NACE CP-3
Senior Project Manager
Vector Corrosion Services

Outline

- Corrosion background
 - How and why does it happen
- Reinforced concrete structures
 - Deterioration process
 - Special considerations
- Steel structures
 - Deterioration process
- Corrosion mitigation solutions
 - Galvanic and impressed current cathodic protection

Corrosion Background

ASCE Report Card (2017)

- Port Infrastructure
 - C+
- Inland waterways
 - D
- Funding Provided \$22 Billion USD
- Investment Needed \$37 Billion USD
- Deficit of \$15 Billion USD

NACE Cost of Corrosion (2002)

- Infrastructure
 - \$22.6 Billion USD
 - Waterways and Ports
 - \$0.3 Billion USD
- Transportation
 - \$29.7 Billion USD
 - Ships
 - \$2.2 Billion USD

Corrosion

- Electrochemical reaction
- Requires
 - Moisture

- Anode
 - Where rust is formed
- Cathode
- Electrolyte water or concrete
 No section loss
- Metallic path steel

Reinforced Concrete Structures

Corrosion of Reinforced Concrete

- Concrete is naturally alkaline
 - pH of about 13
- Steel is naturally passive at this alkalinity
 - Formation of passive layer
- Passive layer can be destroyed by;
 - Chlorides
 - Carbonation

Chloride Induced

- Chloride ions diffuse into concrete and destroy steel's passive layer
- Source of chlorides
 - Marine environments
 - De-icing salts
 - Chemical/processing plants
 - Cast into concrete
- Chlorides are not consumed in corrosion reaction, therefore, once threshold concentration reached, corrosion can occur unabated

Chloride Concentration Threshold

- Generally accepted chloride thresholds
 - 350 ppm of *concrete*
 - 0.035% by mass of concrete
 0.3% by mass of cement
- 3000 ppm by mass of cement

 - 1.5 lbs per cubic yard of *concrete*

Carbonation

- Carbon dioxide permeates into concrete
- Reduces pH of concrete
 - CO₂ reacts with free lime, Ca(OH)₂, resulting in CaCO₃ and H₂O
- Reduced pH de-passivates steel
- Often seen when
 - Concrete permeability is high
 - Industrial sites
 - Very old structures carbonation is a result of time and exposure

Corrosion Induced Damage

Damage resulting from

- Metal section loss and
- Formation of iron oxide (rust)
- Expansive properties of iron oxide create tensile stresses in concrete

 Leads to cracking, delamination, and eventual

spalling

Corrosion Induced Damage

- Conventional mild reinforcing bar
 - In most cases loss of steel section not primary concern
 - Damage to concrete becomes significant and observable prior to severe section loss
- High strength steel
 - Minor section loss can have significant effect on strength
 - Can have significant section loss without significant concrete damage

Patch Accelerated Corrosion

Steel Structures

Steel Structures

- Directly exposed to environment
- Primary factors affecting corrosion
 - pH
 - Temperature
 - Moisture
 - Wetting drying cycles
 - Ion content
 - Chlorides, sulfates, etc.
 - Oxygen Content
 - Water Velocity

Dissimilar Metals – Galvanic Corrosion

- Dissimilar metals in direct electrical contact with each other will result in the less noble metal corroding
 - Principal used in galvanic cathodic protection to protect a metal while sacrificing another metal.

Table 1.1 Partial Standard emf Series of Metals

Those 1.1 I area stantain a city series of filenes		
Half-cell	Metal	Standard Electrode Potential
		E _o (volts) vs. SHE*
Au/Au ⁺⁺⁺	Gold	+1.498
Pt/Pt ⁺⁺	Platinum	+1.200 Less Noble
Cu/Cu ⁺⁺	Copper	+0.345 Metal
$H_2/2H^+$	Hydrogen	0.000
Pb/Pb ⁺⁺	Lead	-0.126
Ni/Ni ⁺⁺	Nickel	-0.250
Fe/Fe ⁺⁺	Iron	-0.440
Zn/Zn^{++}	Zinc	-0.763
A1/A1 ⁺⁺⁺	Aluminum	-1.662
Mg/Mg ⁺⁺	Magnesium	-2.363

Corrosion Mitigation

Cathodic Protection

- Cathodic protection (CP) is a method of corrosion control through the application of direct current to a metal under protection, forcing it to become a cathode
 - Anode is where rust occur and the cathode is protected from section loss
- Two main types of CP
 - Galvanic
 - Impressed current

Impressed vs Galvanic

- Galvanic
 - Typically very low maintenance
 - Self regulating current output based on environment
 - Current output limited
 - Typically less expensive
 - Not always though
 - Limited life span between 10 to 30 years
- Impressed
 - Provides significantly more current
 - Can reduce number of anodes
 - Long life span
 - Can be over 50 years depending on application
 - Requires maintenance

Galvanic CP

- Uses the concept of dissimilar metal corrosion in order to protect steel reinforcing.
 - Anode types;
 - Zinc
 - Aluminum
 - Magnesium
 - All are less noble than steel

Steel Sheet Pile Construction

Sheet Pile Galvanic CP

Piles

- Jacketing is the most common repair strategy
 - Critical to have cathodic protection in jackets
 - FDOT discovered accelerated corrosion in jackets without CP
 - Hartt, W.H. and Rapa, M., "Condition Assessment of Jackets Upon Pilings for Florida Bridge Substructures," Final Report, WPI No. 0510803, Florida Department of Transportation, Tallahassee, Florida, April 13, 1998

Galvanic CP — Pile Jackets

- Several different types of jackets
- Dependent on the environment
 - Chloride content of water
 - Tidal range

Jacket Installation

Zinc Mesh – Tidal Jacket

- Used only in salt water environments where most of the pile lenght is within the tidal region
 - Requires constant exposure to salt water to keep zinc active

Above Tidal Jacket

- Commonly referred to as "wicking" jackets
- Zinc wrapped in absorbent fabric
 - Draw salt water above tidal region to keep zinc active
- Still uses a bulk anode below the water line

Alkali Activated Jackets

- Can be used in salt water, above tidal, brackish, freshwater, or non marine environments
 - Uses pH of mortar to activate zinc instead of salt water

Jacket Research

 VCS in partnership with Vector Corrosion Technologies and Florida Department of Transportation have been trialing new jacket methods on a bridge in the gulf.

Zinc Mesh

Wicking Jackets

Alkali Activated

Comparison

Metalizing Both Galvanic and Impressed

Impressed Current

- Steel elements
 - Bulk anodes
 - Submerged or buried applications
- Concrete elements
 - Ribbon anodes
 - Discrete rode anodes

Power Source

CATHODIC PROTECTION RECTIFIER

WARNING !

Questions

