Best Practices in Master Planning, Research and Technology Tools

American Association of Port Authorities Tampa, Florida

Thomas Ward, PE, D.PE Senior Maritime Planner

January 27, 2017

OVERVIEW

- → Problems of Dimension
- → Problems of Volume
 - Analytical Example
- Problems of Commerce
- Problems of Finance
- → Planning Response
- → Future Progress

PROBLEMS OF DIMENSION

A PROBLEM OF DIMENSION

PROBLEMS OF VOLUME: ANALYTICAL EXAMPLE

\rightarrow Using Terminal Simulation Demand Model (© WSPIPB)

Robust, reliable, detailed modeling of flow and inventory

→ Three Cases:

- Three ships per week, 1,000 lifts per call, Days 2, 4 and 6
- Two bigger ships per week, 1,500 lifts per call, Days 2 and 5
- One big ship per week, 3,000 lifts per call, Day 2

Common elements

- Same annual volume: 156,000 lifts per year
- Maximum call duration is two working days
- 7-day gate operations
- US West Coast values
 - Empty/Full, Import/Export, Gate/Rail
 - Storage modes and densities
 - Dwell times and distributions

ANALYSIS: YARD AREA

Increased storage area for same volume:

Case 2: +11%, Case 3: +37%

ANALYSIS: GATE FLOW

Case 1, Max: 299 Case 2

Case 2, Max: 317 Case 3,

Case 3, Max: 380

Increased boundary flow for same volume:

Case 2: +6%, Case 3: +27%

PROBLEMS OF VOLUME

For the <u>same</u> volume, consolidation into fewer calls:

- → Increases storage demand
- → Increases storage area required
 - More land required

→ Increases boundary flow rates – gate and rail

- Larger equipment fleets required
- Heavier peak impacts on hinterland transport networks

To keep the same call <u>duration</u>, supporting the same vessel *deployment pattern*:

- Case 1 required 2 ship-to-shore (STS) cranes
- Case 2 required 3 STS cranes
- Case 3 required 4 STS cranes
- Each STS crane is supported by a fleet of yard equipment, so more yard equipment and labor are needed

PROBLEMS OF COMMERCE

→ Shift to liner alliances sharing terminals

- Terminal looks like a public terminal, rather than dedicated
- Terminal manages liner contracts with different T&C, performance, pricing
- Terminal may serve multiple rail operators, rather than one
- More "sorts" of containers reduce permissible yard density
- More inter-terminal shifts to accommodate variable berthing

→ Shift to fewer liners in fewer alliances

- Terminal contracts with liner, not with alliance
- Alliance has authority, but no collective responsibility
- Shifts power from port to liner: ports cannot collude
- Shifts power from terminal operator to liner: operators cannot collude

PROBLEMS OF FINANCE: COST

- → More container storage area
- → More, and bigger, STS cranes
- → Stronger wharves
- → Longer wharves
- → More supporting equipment
- → Remodeled STS cranes
- → Higher densities: higher operating costs
- Dredged channels wider and deeper
- Expanded turning basins
- → Taller bridges
- → More, and more powerful, tugs
- Higher traffic impacts in the hinterland
- Some of these are "hard constraints"

PROBLEMS OF FINANCE POLICY

- Bigger ships mean higher terminal costs and poorer terminal service, <u>for the same volume</u>
- Serving bigger ships requires substantial <u>investment</u> in equipment and terminal space, <u>for the same revenue</u>
- Ports choke on bigger ships because investment in servicing them generates <u>negative return</u>
- Poor finance structure greatly deters private investment, putting pressure on <u>public sources</u> of funding

→ The public doesn't understand why this is *their* problem

PLANNING RESPONSE

- Tactical Peaking Factor impacts peak storage demand
- Terminal plans must reflect peak demand
- Terminal planning must be closely tied to capacity model that combines:
 - Estimated berth capacity based on possible ship calls
 - Impact of ship call pattern on storage demand
 - Relationship between storage map and storage capacity
- As problems become tougher, our tools must advance in sophistication
- \rightarrow <u>Port | Rail | Intermodal Modelling Environment (© WSPIPB)</u>

PRIME | TERMINAL

PRIME USES

Integrated platform that allows rapid, robust planning and operational analysis of goods movement terminals

Suitable for

- Conceptual planning
- Master planning
- Phased development analysis
- Due diligence
- → Physical plans in Microsoft Visio
- Operational models in Microsoft Excel
- Tight, direct integration between plans and models

PRIME GENERAL ARCHITECTURE

- → MS Visio Professional used for plans
- Visio Stencils hold customized smart "shapes"
 - Shapes have a copyright that appears on "hover"
 - If copyright notice is changed in any way, tools don't work
- → MS Excel used for models
- → MS Visual Studio | Visual Basic used for all working Tools
- Tools are compiled as "COM Add-Ins" for Visio and Excel

EXAMPLE: TERMINAL DENSIFICATION

- The example shows the staged conversion of a marine container terminal
 - Three berths
 - On-dock intermodal container yard for double-stack operations
- Initial configuration uses 1-over-2 straddle carriers for most container storage and all transport
- Final configuration uses 1-over-5 automated stacking cranes (ASCs) for most container storage, and manned shuttle carriers for all transport

INITIAL LAYOUT

FINAL LAYOUT

PHASED DEVELOPMENT

STATISTICS TRANSFERRED TO PRIME MODEL

	Ground Slots in Visio Layout: PRIME Demo 160302.vsdm on 3/2/2016 at 17:02:21										
Block Name	A0	A1a	A1b	A2a	A2b	A3a	A3b	A4a	A4b	A5a	A5b
RfRk ASC	0	0	96	96	192	192	304	304	304	304	304
RfRk Strad	504	504	764	584	584	548	548	332	500	428	600
SP	1,501	1,501	1,501	1,576	1,576	1,576	1,596	1,146	1,254	1,056	2,520
SP Taper	0	0	0	0	0	0	0	0	0	0	0
Strad	11,531	7,990	7,990	5,750	5,750	4,588	4,588	1,984	1,984	806	0
Strad Taper	0	0	0	0	0	0	0	0	0	0	0
RMG	0	0	0	0	0	0	0	0	0	0	0
ASC/MS	0	0	2,400	2,400	4,800	4,800	7,472	7,472	10,672	10,672	13,072
ASCS	0	0	-144	-144	-288	-288	-456	-456	-456	-456	-456

Storage capacities as 20-foot ground slots

ANALYSIS MODEL CHARACTERISTICS

- Excel-based static model
- → Tied to plan via direct bilateral data transfer
 - Using COM Add-Ins for Visio & Excel
- Single spreadsheet deals with all aspects of analysis
 - Demand and Capacity
 - Equipment fleets, utilization, manning, costs
 - Infrastructure sizing, timing, impact, costs
- No cross-linking of spreadsheets or links to external databases
- Uniform, coherent use of styles to clarify the nature of each cell

ANALYSIS MODELS

- → Berth-constrained capacity
- → Yard-constrained capacity
- → Rail yard capacity
- → Gate requirements
- Equipment requirements and utilization
- Demand timing
- → Capital expense estimation
- \rightarrow Operating expense estimation
- Cash flow estimation
- → All integrated and cross-referencing

BERTH AND YARD CAPACITY LINKAGE

Fewer ships means more storage demand, more so for freight with short dwell times

STATIC STORAGE & THROUGHPUT CAPACITY

BERTH- AND YARD-CONSTRAINED CAPACITY

PHASE TIMING VS. DEMAND

EQUIPMENT FLEET SIZING

MACHINE OPERATING HOURS PER YEAR

CAPEX CASH FLOW

PRIME | PORT PORT OF LONG BEACH LAND USE STUDY

FUTURE PROGRESS AND RESEARCH

- Focus should be on mitigating impacts of ship-induced demand peaks throughout the system
- → Appointment systems
- Integration of truck and terminal operations
- Extended gate AND warehouse operations
- → Dray-off programs
- → "Taxi Dray" or "Uber Truck" systems
- → Rail shuttles for regional distribution
 - Rail automation?
- → All efforts must respect commercial realities, and avoid theoretical treatments

