

NREL Research Energizes

American Innovation

Electrifying Fleets and Demonstrating Zero Emissions Technology

Brett Oakleaf
Ports/Airports – Lab Lead
September 2018

Renewable Power

Solar

Wind

Water

Geothermal

Sustainable Transportation

Bioenergy

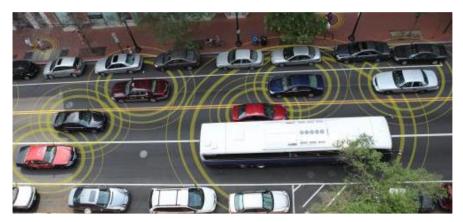
Vehicle Technologies

Hydrogen

Energy Efficiency

Buildings

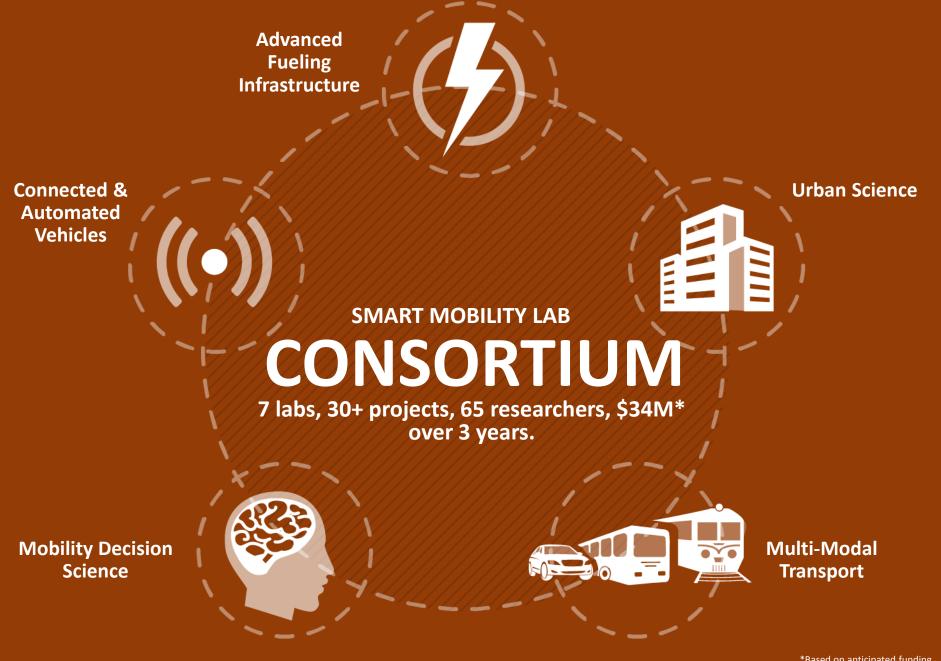
Advanced Manufacturing


Government Energy Management

Energy Systems Integration

High-Performance Computing

Data and Visualizations


Path to Sustainable Transportation Technologies

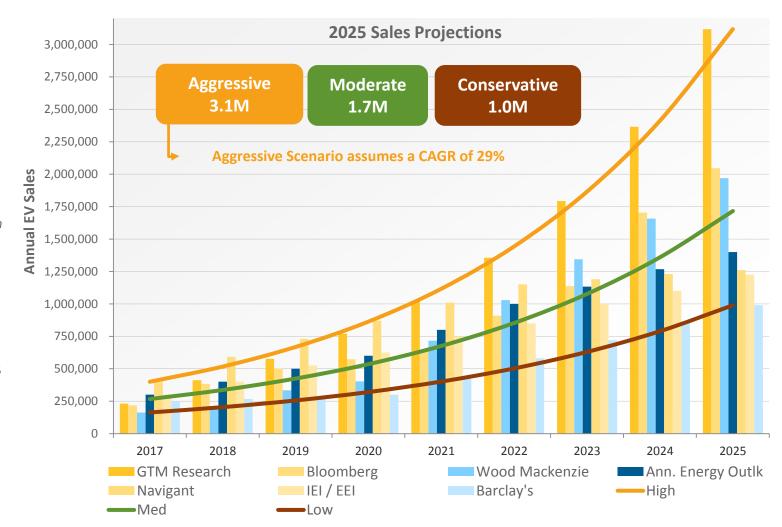
Key Research Areas

- Co-optimizing fuels and engines R&D to maximize performance, efficiency, and compatibility with existing infrastructure
- Increasing sustainable mobility —
 connected and autonomous transportation
 innovations for intelligent, efficient,
 integrated network
- Reducing expense of battery development
 Computer-Aided Engineering for Electric-Drive Vehicle Batteries (CAEBAT) tool
- Improving efficiency of heavy-duty vehicles – commercial truck fuel, engine, thermal management, and powertrain innovation
- Demonstrating electrification of vehicles –
 energy storage for plug-in electric and fuel
 cell electric vehicles; power electronics;
 and infrastructure R&D to boost
 performance and market viability

*Based on anticipated funding

Expected EV Growth

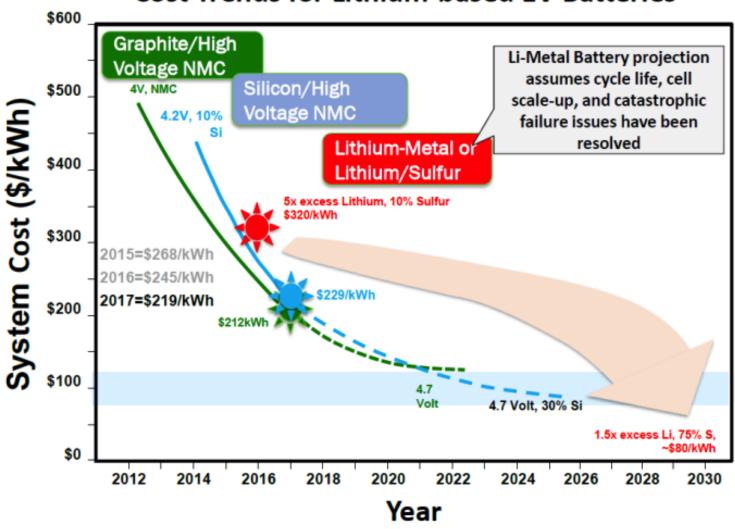
37%


Year-over-year national sales growth of EVs in 2016

Source: Insideevs.com

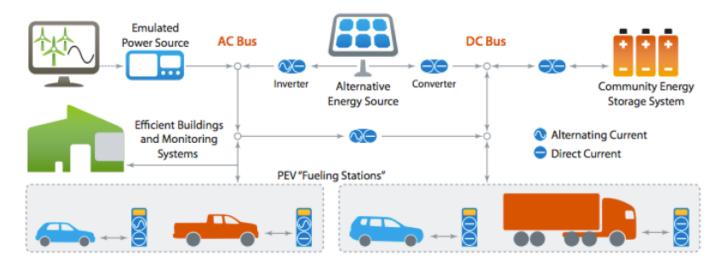
62%

Year-over-year national EV sales growth in 2017


Source: Insideevs.com

Sources embedded in chart above

EV – Battery costs


EV Charging Infrastructure

Combination of fast charge batteries and a network of high capacity chargers can minimize range anxiety, promote the market penetration of BEVs, and increase total electric miles driven.

Type of Charging Station	Level 2 220V (~7.2kW)	DC Fast Charger (50kW)	Tesla Super Charger (140 kW)	Extreme Fast- Charging (350kW)
Time to charge (for 200 miles)	8 hours	2 hours	25 mins	10-15 mins
Charging Device			TESLA	(TBD)

Source: Alternative Fuels Data Center afdc.energy.gov; 2015 NACS Retail Fuels Report, http://www.nacsonline.com/YourBusiness/FuelsReports/2015/Documents/2015-NACS-Fuels-Report full.pdf;

EV, Renewable Energy, Buildings, and Energy Storage - Working Together

Developing Systems Integrated Applications

Managed Charging

Evaluate functionality and value of load management to reduce charging costs and contribute to standards development

Local Power Quality

Leverage charge system
power electronics to monitor
and enhance local power
quality and grid stability in
scenarios with high
penetration of renewables

Emergency Backup Power

Explore strategies for enabling the export of vehicle power to assist in grid outages and disaster-recovery efforts

Bi-Directional Power Flow

Develop and evaluate integrated V2G systems, which can reduce local peak-power demands and access grid service value potential

Vehicle-to-Grid Challenges

Life Impacts

Can functionality be added with little or no impact on battery and vehicle performance?

Information Flow and Control

How is information shared and protected within the systems architecture?

Holistic Markets and Opportunities

What role will vehicles play and what value can be created?

NREL's Electric Futures Study (Transportation)

Changing Electric Paradigm

ELECTRIFICATION

Critical to long-term carbon goals and will be a relevant decentralized energy resource

> Key technologies: Electric vehicles, vehicle to grid/home, smart charging, heat pumps

Grid Edge Transformation

DIGITALIZATION

Allows for open, real-time, automated communication and operation of the system

DECENTRALIZATION

Makes customers active elements of the system, though requires significant coordination

> Key technologies: energy efficiencies, decentralized storage, microgrids, demand response

Key technologies:

Network technologies (smart metering, remote control and automation systems, smart sensors, optimization and aggregation platforms) and customer technologies (smart appliances and devices, Internet-of-Things)

Yard Tractor Usage Map – PANYNJ terminal

Electric Utility Investment in EV Chargers

Current Announcements

- California CEC approval of 3 utilities
 \$738M investment
- NYPA approval of \$250M (throughout state, including airport)
- NJ's PSEG \$300M investment
- VW Electrify America \$2B investment

Thank You

Brett Oakleaf

brett.oakleaf@nrel.gov

W - (303) 275-3771

C - (303) 888 - 3605

www.nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

