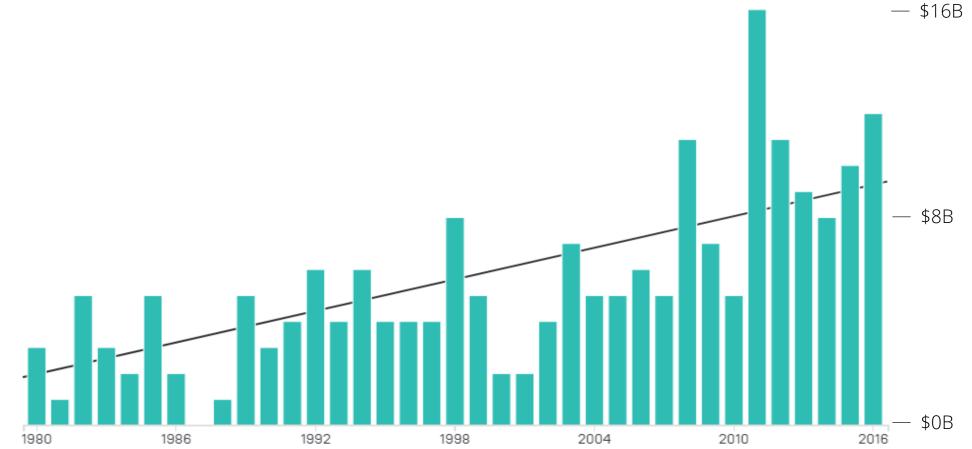


ADDRESSING INFRASTRUCTURE VULNERABILITY IN THE CONTEXT OF URBAN RESILIENCE EFFORTS

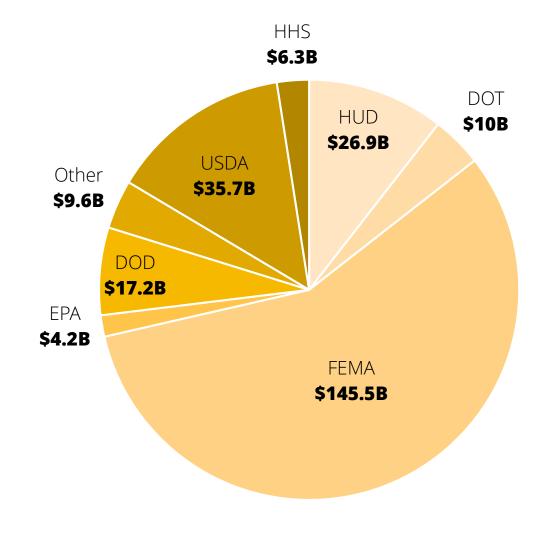
Jamie Torres Springer | April 18, 2018


WHY RESILIENCE?

Around the world, disasters are becoming **more frequent and severe as recovery costs are growing**.

Financial losses from adverse events have grown exponentially. Since the 1980s, the **average number of billion dollar-disasters has risen to 5.4 per year**.

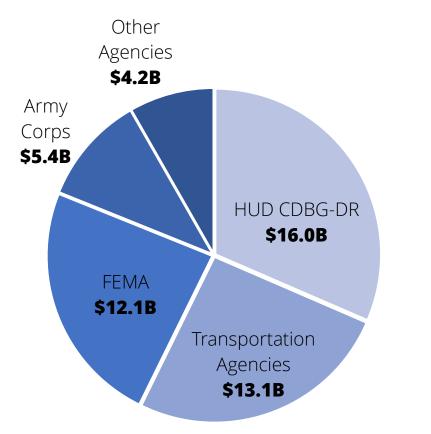
ANNUAL FREQUENCY OF BILLION DOLLAR DISASTERS (1980-2016)



Source: New America HR&A Advisors, Inc.

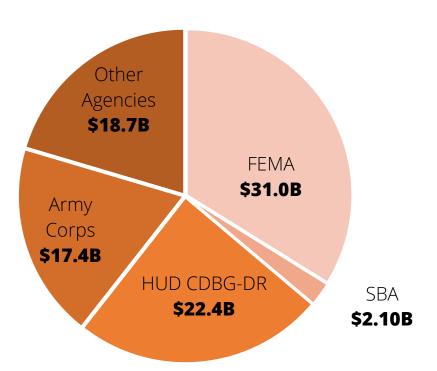
As cities are preparing to adapt, **conventional solutions are ill-suited to address the increased risks**.

The federal government spent at least **\$277.6 billion from 2005 through 2014** for disaster assistance.

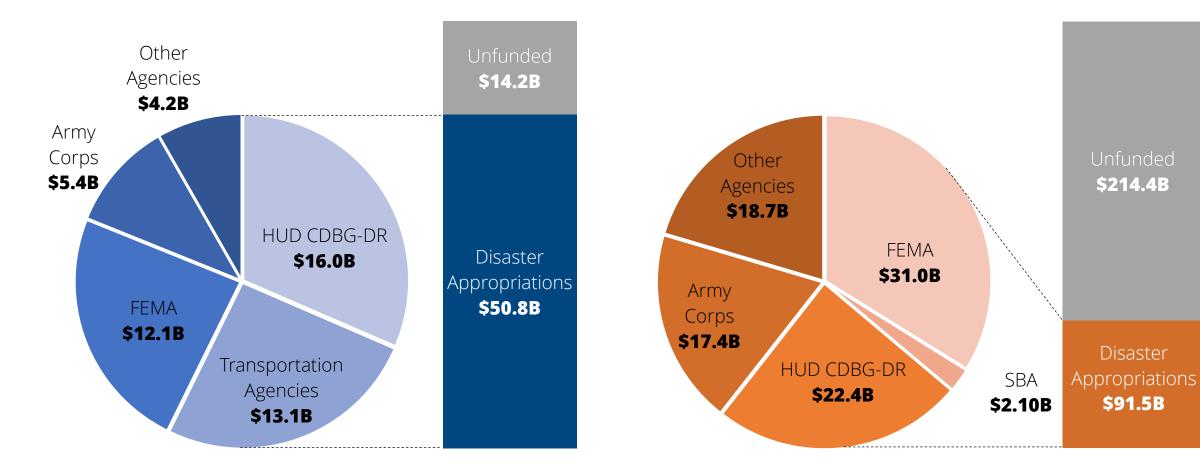

Source: GAO HR&A Advisors, Inc.

Addressing Infrastructure Vulnerability | 7

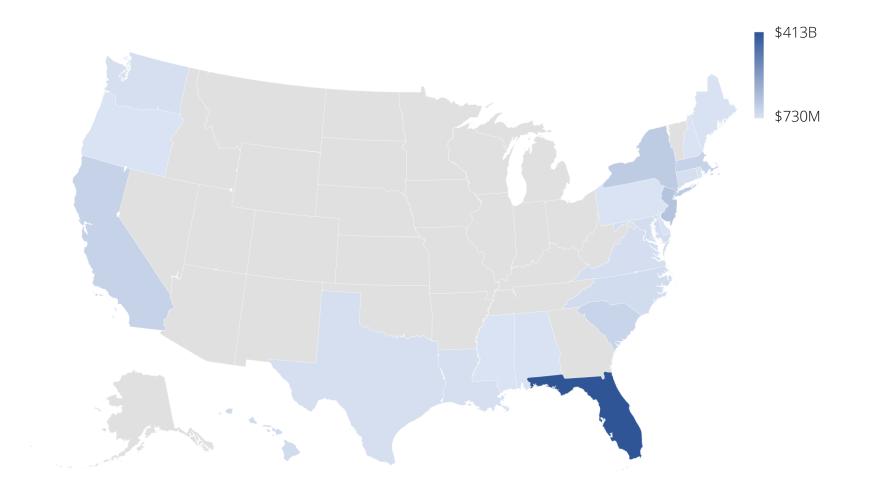
After a major disaster, Congress appropriates **disaster recovery funds** through multiple agency programs.


\$50.8B 2013 DISASTER RELIEF APPROPRIATIONS:

Superstorm Sandy


\$91.5B 2017 DISASTER RELIEF APPROPRIATIONS:

Hurricanes Harvey, Irma, and Maria, and California Wildfires


However, federal recovery funding is **unable to cover damages or support adequate mitigation.**

\$65B ESTIMATED DAMAGES FOR 2013

\$306B ESTIMATED DAMAGES FOR 2017

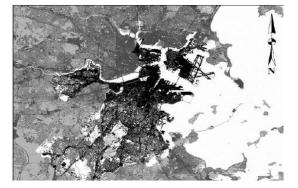
Additionally, with 6 feet of sea level rise currently projected, **over \$880B of property value could be underwater by 2100**.

These hazards cannot be considered in isolation. **Increasing climate-related risks are combined with vulnerabilities** to threaten both high value economic assets and vulnerable populations.

Storm Surge & Tidal Inundation

Sea Level Rise

Heavy Precipitation


Extreme Heat

Aging Infrastructure & Housing

Low-Lying, Built on Infill

Impervious Surfaces

Storm Drain & Sewer Systems

Long-term funding solutions require designing projects to generate **multiple benefits**.

EXPANDED COST-BENEFIT ANALYSIS	Project costs Project Benefits				
	Citywide Benefit	Environmental/ Social Benefits	Avoided Damage/ Insurance Savings	Enhanced Property Value	
APPROACHES TO MONETIZING BENEFITS	General Fund State & Federal Appropriations	Impact Bonds Philanthropic Funding	Incremental Value Assessment Insurance Levy	Value Capture	

Project Costs

PORTS & CITIES

Based on asset value, American cities take **5 of the top 10 spots** among global port cities ranked by exposed assets, with **a total of \$1.1T in goods at risk**.

City	Population	Exposed Assets	Exposed Assets Ranking
Miami	5.4M	\$416B	1
New York-Newark	18.7M	\$320B	2
New Orleans	1.0M	\$233B	3
Osaka-Kobe	11.3M	\$215B	4
Tokyo	35.1M	\$174B	5
Amsterdam	1.1M	\$128B	6
Rotterdam	1.1M	\$114B	7
Nagoya	3.2M	\$109B	8
Tampa-St Petersburg	2.3M	\$86B	9
Virginia Beach	1.5M	\$84B	10

Note: Dollars in USD Source: Nicholls, R. (2008) HR&A Advisors, Inc.

In addition to goods, American cities also rank highly among those with **large atrisk populations**.

City	Population	Exposed Population	Exposed Population Ranking
Mumbai	18.2M	2.8M	1
Guangzhou	8.4M	2.7M	2
Shanghai	14.5M	2.4M	3
Miami	5.4M	2.0M	4
Ho Chi Minh City	5.0M	1.9M	5
Kolkata	14.2M	1.9M	6
New York-Newark	18.7M	1.5M	7
Osaka-Kobe	11.3M	1.4M	8
Alexandria	3.8M	1.3M	9
New Orleans	1.0M	1.1M	10

Note: Population in 2005 Source: Nicholls, R. (2008) HR&A Advisors, Inc. **By 2070**, the United States' largest port cities will have...


PEOPLE AT RISK

Note: Dollars in USD Source: Nicholls, R. (2008), includes 17 port cities HR&A Advisors, Inc.

Addressing Infrastructure Vulnerability | 17

LIMITED RISK Port of Newark-Elizabeth

High Risk Area

Moderate/Low Risk Area

Source: FEMA, APM Terminals Addressing Infrastructure Vulnerability | 18

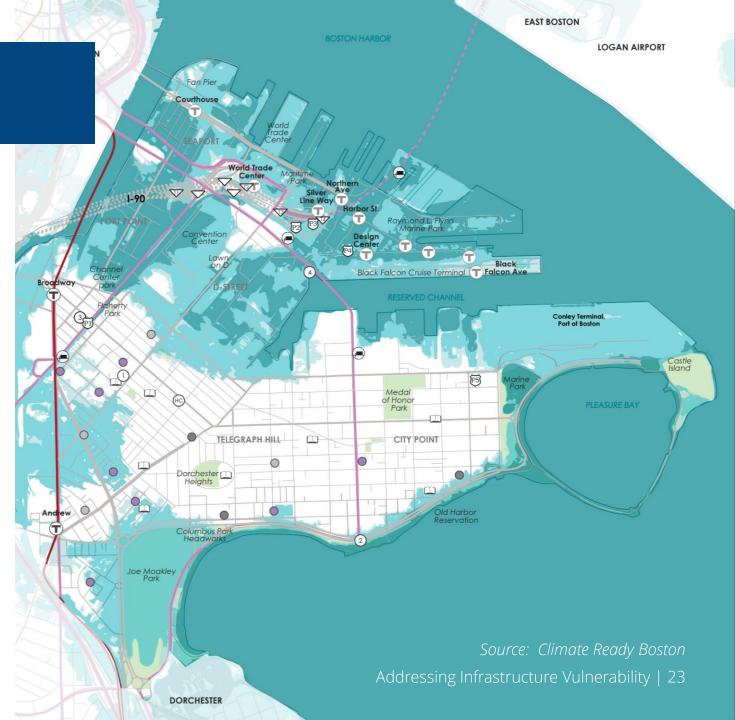
ISOLATED RISK Ports of Los Angeles and Long Beach

High Risk Area Moderate/Low Risk Area

> Source: FEMA, Port of Los Angeles Addressing Infrastructure Vulnerability | 19

High Risk Area Moderate/Low Risk Area

Source: FEMA, Georgia Ports Addressing Infrastructure Vulnerability | 20



Resilience Layers can be used to methodically approach resilience challenges, to develop robust solutions that various co-benefits.

DISTRICT FLOOD PROTECTION Boston, MA

- Context: Of all the areas studied thus far through the *Climate Ready Boston* process, South Boston faces some of the greatest exposure and potential losses to coastal flooding
- Intervention: Climate Ready Boston recommends creation of a coastal protection system, including studying feasibility for district-scale flood protection in areas like South Boston where significant residential communities and port assets are exposed

IKE DIKE Houston, TX

- Context: Hurricane Ike caused more than \$30 billion in damages, including massive economic losses associated with the temporary closure of the Port of Houston
- Intervention: The Ike Dike is a proposed coastal barrier spanning Galveston Island to Bolivar Peninsula, that when complete, will protect the Houston-Galveston region from hurricane-induced storm surge

EAST SIDE COASTAL RESILIENCY New York, NY

- Context: As the first phase of the Rebuild by Design-proposed "Big U," the East Side Coastal Resiliency Project received \$335M in CDBG-DR funds to reduce coastal flood risk to Manhattan's east side
- Intervention: A 2.2-mile integrated coastal protection system, anchored by a planted berm and recreational areas that will act as a barrier during future storm events to protect shared assets, including power generation stations and subway access

ADDRESSING INFRASTRUCTURE VULNERABILITY IN THE CONTEXT OF URBAN RESILIENCE EFFORTS

Jamie Torres Springer | April 18, 2018

