



# NREL Transportation and Vehicles: Fleet DNA & Commercial Vehicle Technologies

<u>Josh Eichman</u> and Ken Kelly National Renewable Energy Laboratory

March 7, 2018

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

### **NREL Transportation and Vehicle RD&D Activities**

### Advanced Combustion / Fuels Advanced Petroleum and Biofuels Combustion / Emissions Measurement Vehicle and Engine Testing

### Advanced Power Electronics and Electric Motors Thermal Management Advanced Heat Transfer Thermal Stress and Reliability



### Infrastructure and Impacts Analysis

Vehicle-to-Grid Integration Integration with Renewables Charging Equipment & Controls Fueling Stations & Equipment

### Vehicle Deployment / Clean Cities Guidance & Information for Fleet Decision Makers and Policy Makers Technical Assistance Online Data, Tools, Analysis

### Advanced Energy Storage

Thermal Characterization / Management Life/Abuse Testing and Modeling Computer Aided Engineering Electrode Material Development

#### **Commercial Vehicle Technologies**

Technology Field Testing & Analysis Big Data Collection, Storage & Analysis Vehicle Systems Modeling Super Truck and 21<sup>st</sup> Century Truck Vehicle Thermal Management

#### **Hydrogen and Fuel Cells**

Fuel Cell Electric Vehicles Fuel Cell Buses Fueling Infrastructure Hydrogen Systems and Components Safety, Codes and Standards

#### **Mobility Systems**

Connected and Autonomous Vehicles Vehicle Systems Modeling Technology Adoption Cost of Ownership Modeling SMART Cities Columbus

#### **Regulatory Support**

EPAct Compliance Data & Policy Analysis Technical Integration Fleet Assistance

#### NATIONAL RENEWABLE ENERGY LABORATORY

## Medium- and Heavy- Vehicle Field Testing and Evaluations

Evaluate the performance of alternative fuels and advanced technologies in medium- and heavy-duty fleet vehicles - in partnership with commercial and government fleets and industry groups vehicles.

### Collect, analyze and publicly report data:

- Drive cycle and system duty cycle analysis
- Operating cost/mile
- In-use fuel economy
- Chassis Dynamometer emissions and fuel economy
- Scheduled and unscheduled maintenance
- Warranty issues
- Reliability (% availability, MBRC)
- Implementation issues/barriers
- Subsystem performance data & metrics (ESS, engine, after-treatment, hybrid/EV drive focus)

# Data stored in FleetDNA for security and limited public accessibility

Frequent interactions and briefings with stakeholders – fleets, technology providers, researchers, and government agencies



### NREL Field Data, Testing, & Analysis Tools



Partnership with Fleets and Technology Providers = Relevant Results & Optimized Solutions for Real World Applications

21st CENTURY TRU

## **Bringing Fleet Data to Life – Fleet DNA**

### **Objectives:**

- Capture and quantify drive cycle and technology variation for the multitude of <u>medium- and heavy-</u> <u>duty</u> vocations
- Provide a common data storage warehouse for medium- and heavy-duty vehicle data across DOE activities and labs – <u>www.nrel.gov/fleetdna</u>
- Integrate existing DOE tools, models, and analyses to provide data driven decision making capabilities

**For Government :** Provide in-use data for standard drive cycle development, R&D, tech targets, and rule making

**For OEMs:** Real-world usage datasets provide concrete examples of customer use profiles

**For Fleets:** Vocational datasets help illustrate how to maximize return on technology investments

**For Funding Agencies:** Reveal ways to optimize impact of financial incentive offers

**For Researchers:** Provides a data source for modeling and simulation



# **NREL / SCAQMD Port Drayage Projects**

# Zero Emissions Cargo Transport (ZECT)

- Objectives
  - Develop and demonstrate zero emission drayage truck technologies in real world cargo transport operations – Port of LA/Long Beach
  - Measure and analyze vehicle performance (NREL)
  - Accelerate the deployment of zero emission technologies in port drayage operations
- Includes Heavy-duty EV, Fuel Cell range extenders, and CNG hybrids

# SCAQMD - NREL FleetDNA Roadmap

- Objectives apply NREL FleetDNA approach to:
  - match powertrains and advanced technology with observed duty cycles of medium- and heavy-duty trucks.
  - enable intelligent deployment of advanced technology to maximize fuel economy and emissions reductions in the South Coast air basin
  - Currently collecting vehicle duty-cycle data on *port drayage*, transfer trucks, and delivery vehicles







### **NREL Baseline Data Collection - Port Drayage**

- Instrumented 32 Class 8 Tractors
- 588 vehicle days of 1Hz GPS and vehicle CAN data
- Multiple OEMs
  - Navistar, Volvo, Mack,
    Freightliner, Peterbilt & Sterling
  - 2 CNG vehicles (not included in fuel analysis)
- Mixture of automatic, automated and manual transmissions





- 71,243 Miles
- 557 Operating Days
- 30 Unique Vehicles
- 3 Operating Companies



Port of Long Beach & Port of Los Angeles

| Vocation     | Operator                                  | Locations      | Weeks | Vehicles | Operating Days |
|--------------|-------------------------------------------|----------------|-------|----------|----------------|
| Port Drayage | TTSI                                      | Compton, CA    | 16    | 2        | 166            |
|              | Container Freight<br>(California Cartage) | Long Beach, CA | 4     | 14       | 180            |
|              | Dependable<br>Highway Express             | Wilmington, CA | 4     | 14       | 211            |

# **NREL Drive Cycle Analysis - Clustering**







Time (minutes)

# Exploring Options – NREL FASTSim

### <u>Future</u> <u>Automotive</u> <u>Systems</u> <u>Technology</u> <u>Sim</u>ulator (FASTSim)





### **Electric Vehicle Grid Integration at NREL**

Vehicles, Renewable Energy, and Buildings Working Together



### **Developing Systems Integrated Applications**

### Managed Charging

Evaluate functionality and value of load management to reduce charging costs and contribute to standards development

### **Local Power Quality**

Leverage charge system power electronics to monitor and enhance local power quality and grid stability in scenarios with high penetration of renewables

### Emergency Backup Power

Explore strategies for enabling the export of vehicle power to assist in grid outages and disaster-recovery efforts

### Bi-Directional Power Flow

Develop and evaluate integrated V2G systems, which can reduce local peak-power demands and access grid service value potential

### **Vehicle-to-Grid Challenges**

#### **Life Impacts**

Can functionality be added with little or no impact on battery and vehicle performance?

#### **Information Flow and Control**

How is information shared and protected within the systems architecture?

#### **Markets and Opportunities**

What role will vehicles play and what value can be created?

#### NATIONAL RENEWABLE ENERGY LABORATORY

### **NREL Fleet Evaluations Website**

http://www.nrel.gov/transportation/fleettest.html

### **Fleet DNA Website**

www.nrel.gov/fleetdna

### DriveCAT

www.nrel.gov/transportation/drive-cycle-tool

www.nrel.gov



NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.