

LNG in the Maritime Industry

Stephen Cadden Chief Operating Officer, SEA\LNG

THE INDUSTRY ADVOCATE

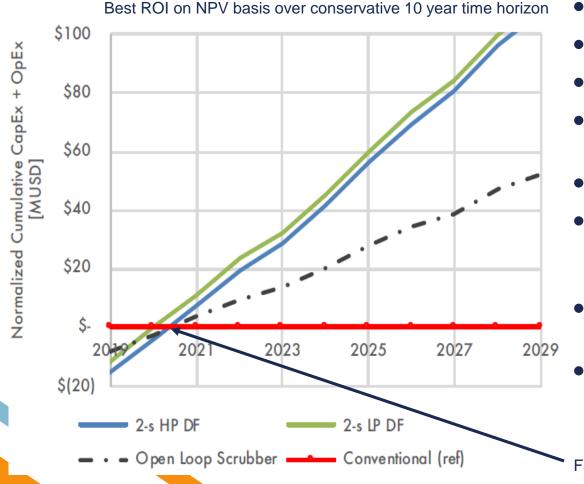
Working across the value chain

ENVIRONMENT

LNG is the most environmentally-friendly, readily available, fuel for shipping today

- <u>thinkstep study</u> on the use of LNG as marine fuel shows GHG benefits of up to 21% compared with current oil-based marine fuels over the entire life cycle from Well-to-Wake
- On a Tank-to-Wake basis, the combustion process for LNG as a marine fuel shows GHG benefits of up to 28% compared with current oil-based marine fuels.
- LNG provides a significant advantage in terms of improving air quality when compared to other conventional fuels which is particularly important in ports and coastal areas

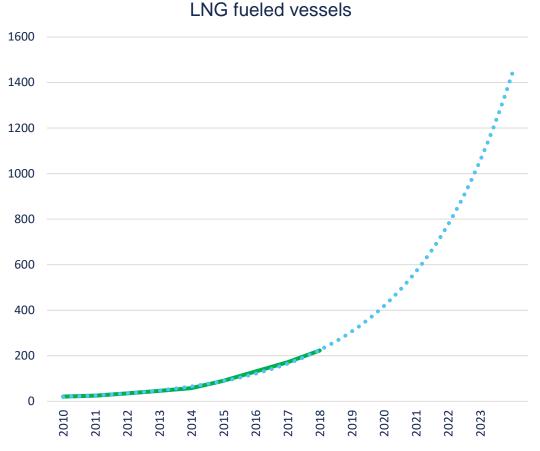
INFRASTRUCTURE


Bulk infrastructure already exists – "Last Mile" investments happening

- Plentiful and growing LNG supply
- Bulk LNG infrastructure exists and is in the right places
- 'Last mile' investments are happening (globally)
- LNG bunkering available or planned top 10 bunkering locations
- Bunker vessels 9 in operation and many more on order

ECONOMICS

Compelling investment case as most financially effective long-term compliance with IMO 2020



- Diminishing CAPEX hurdle
- Competitive energy costs
- Cost of LNG is stable
- Modelled investment case for 14K TEU
 newbuild container vessel
- Asia US West Coast trade route
- Compared LNG DF with HFO + scrubber and LSFO engine options (CAPEX & OPEX costs modelled)
- Variety of fuel price and operating scenarios
- Weighted Average Cost of Capital of 8% over 10 year investment horizon period

USE OF LNG AS A MARINE FUEL IS ACCELERATING

Investment case is increasingly recognized

- Number of LNG fueled ships growing strongly:
 - 170 in operation
 - 184 on order
 - 20% 40% annual growth since 2010
- Advancing across a range of vessel types
- Move from short-sea to deepsea shipping space

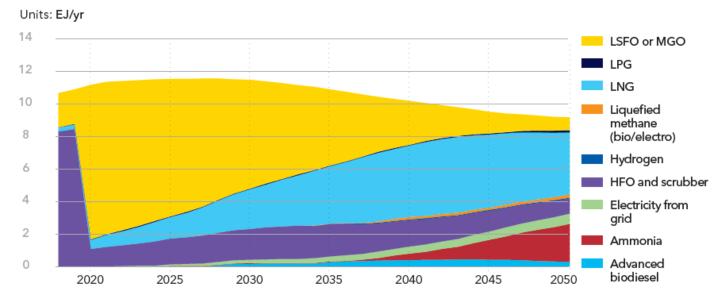
Source: DNV GL LNGi, January 2019

LNG is the ONLY viable Alternative Fuel today

Results of the Sep 19 study by DNV GL into Alternative Marine Fuels

Energy	source		Fos	sil (without C	CS)		Bio		Renewable ⁽³	3)										
	Fuel	HFO + scrubber	Low sulphur fuels	LNG	Methanol	LPG	HVO (Advanced biodiesel	Ammonia	Hydrogen	Fully- electric										
High priority parameters																				
Energy density				\bigcirc		\bigcirc		\bigcirc												
Technological maturity				\bigcirc	\bigcirc	\bigcirc				\bigcirc										
Local emissions				\bigcirc				\bigcirc												
GHG emissions				(2)																
Energy cost										(4)										
Capital cost	nverter orage		8																	
Bunkering availability		ĬŎ		Ŏ	$\overline{\bigcirc}$	Ŏ	Ŏ	Ŏ	Ŏ	Ŏ										
Commercial readiness (1)					\bigcirc	\bigcirc	\bigcirc			(5)	an spe									
														SC.	Se -		- C.C	- CO	50	S.C
Other key parameters											10-1-1					-	3	3	-	-
Flammability		//0///						\bigcirc												
Toxicity					\bigcirc									-	-	1	-	1	-	
Regulations and guidelines						\bigcirc		\bigcirc		\bigcirc	S. Carl	a	2	a	2	2	2	2	2	2
Global production capacity and loca	itions							\bigcirc				-	2	2	1	27	200	270	270	100

WAITING IS NOT AN OPTION LNG engine technology is:


- safe, with millions operating hours experience
- mature, used as a marine fuel for over 50 years
- commercially viable, readily available
- scalable, bunkering available at major ports
- fully compliant with ECAs around the world
- no ocean contamination from marine fuel spill accident
- eliminates SOx pollution preserving human health
- reduces NOx emissions by 95%, Particulate Matter emissions by nearly 99%
- cuts GHG emissions by up to 21% on well-towake basis, 28% on a tank-to-wake basis
- zero-emissions potential through bio and synthetic sources of LNG

ENERGY USE AND PROJECTED FUEL MIX 2018-2050

For the simulated IMO ambitions pathway with main focus on design requirements

- DNV GL forecast, Sep 19
- Recognition of LNG as main marine fuel
- Fuel oil usage peaking shortly
- 20 years before first zero-carbon fuel (Ammonia) becomes widespread
- Little use of hydrogen forecast

LSFO, low-sulphur fuel oil; MGO, marine gas oil; LPG, liquefied petroleum gas; LNG, liquefied natural gas; HFO, heavy fuel oil;

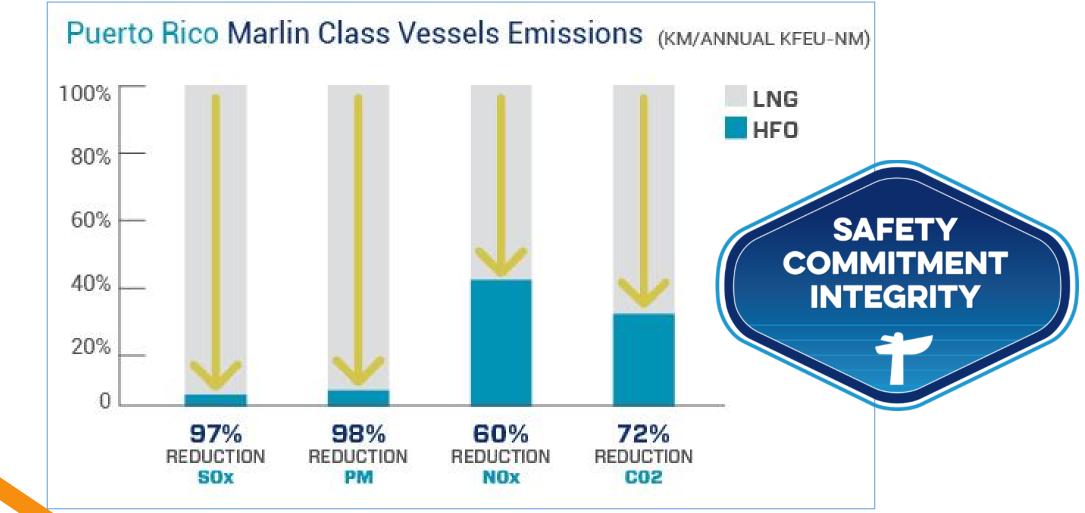
Advanced biodiesel, produced by advanced processes from non-food feedstocks

©DNV GL 2019

TOTE

TOTE: Achieving our Vision – LNG as Marine Fuel

TOT'E Maritime


NEA STAR

Tim Nolan, President and CEO, TOTE Inc.

Driving Advancement in the Use of Alternative Fuels

TOTE'S LNG Projects

Marlin Class Ships: Jacksonville	LNG Bunker Barge: Jacksonville	Orca Class Ships: Tacoma						
		TOTE Matime						

How we started: Operations in JAX

- 250,000 LNG gallons from trucks in 10 hours while simultaneously discharging and loading container cargo
- Since February 2016, over 44.3MM gallons (168,000 m3) safely transferred using skid.
- Applied Cryogenic Technologies (ACT) developed skid
- Pivotal LNG supplies LNG from Macon, Georgia

Clean Jax TOTAL Fuel Bunkered Service = 43,000 m3 (11 3MM/US GAL)

Connections made in under 25 minutes
1,000 m3 LNG transferred in under 4 hours

JAX LNG Terminal

- LNG liquefaction plant and marine berth situated on 37 acre industrial water front property on the St. Johns River
- Serve TOTE Maritime Puerto Rico and other marine customers situated in the Jacksonville area
- Initial tankage of 2,000,000 gallons (7,570m3) with plans for expansion
- Actively targeting other markets including power, trucking and rail

Q1-2021 – Conversion complete and operating on LNG

TOTE

Tacoma Onsite Liquefaction Capability - Direct Delivery

Location of on dock marine loading arm.

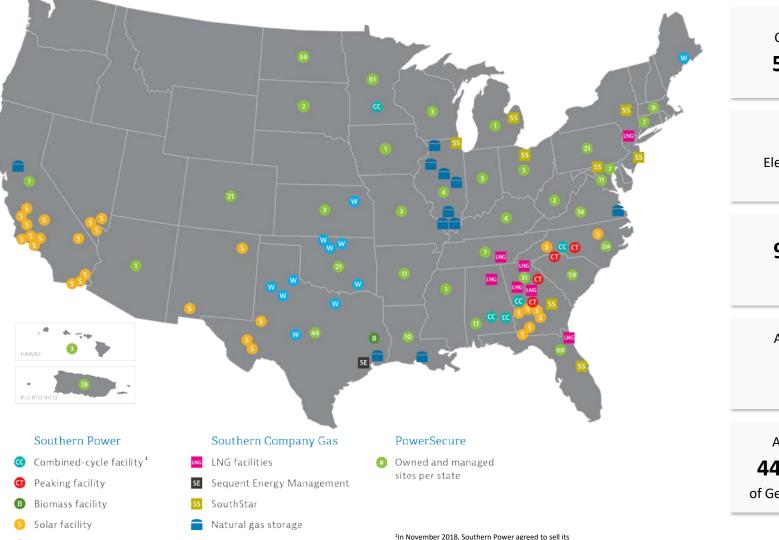
FOSS

LNG Supply Infrastructure Development

Jacksonville Case Study – JAX LNG

Tim Hermann President, Pivotal LNG

Southern Company We provide clean, safe, reliable and affordable energy



Gas pipelines

- 💻 Southern Natural Gas
- Southern Company Gas

Wind facility

Pipeline projects

combined-cycle facility in Mankato. Minnesota

Capabilities in **50 States**

7 Electric & Natural Gas Utilities

9 Million Customers

Approximately **29,000** Employees

Approximately **44,000 MW** of Generating Capacity

Southern Company Gas Overview

0

Sacramento

Southern Company Gas Atlanta-based natural gas services company and subsidiary of Southern Company. **Corporate Headquarters** * **GAS Distribution Operations** Naperville Atlanta Gas Light Chattanooga Gas Nicor Gas Bloomingto Virginia Natural Gas **GAS Marketing Services** SouthStar Energy Services **GAS Wholesale Services** Sequent Energy Management Chattanooga Birmingham **GAS Pipeline Investments Operational Pipelines** Southern Natural Gas Dalton lacksonville Horizon Magnolia Houston O **Pipelines in Development** New Orlea Atlantic Coast PennEast 0 GAS Other Central Valley Gas Storage Golden Triangle Storage Jefferson Island Storage & Hub Pivotal LNG

Virginia: 📥 Virginia Natural Gas

Savannah: 📥 , Georgia Power Brunswick: Atlanta Gas

📥 Alabama Power Pascagoula: **A** Mississippi Power

Mobile:

Southern Company Gas Business Segments

Southern Company Gas – Corporate LNG Fleet

LNG Markets We Serve

Industrial

Maritime

Space

2

Pivotal LNG Markets Through Two Business Entities

- Wholly owned subsidiary of Southern Company Gas formed in 2010
- Owns and operates the Trussville LNG plant near Birmingham, AL, and six 10,000 gallon tankers
- Over 50 years of corporate experience operating LNG facilities safely
- Over 150 years corporate experience delivering reliable energy to customers in service territories throughout the USA, including many ports
- Industry leading brand name in the SE United States

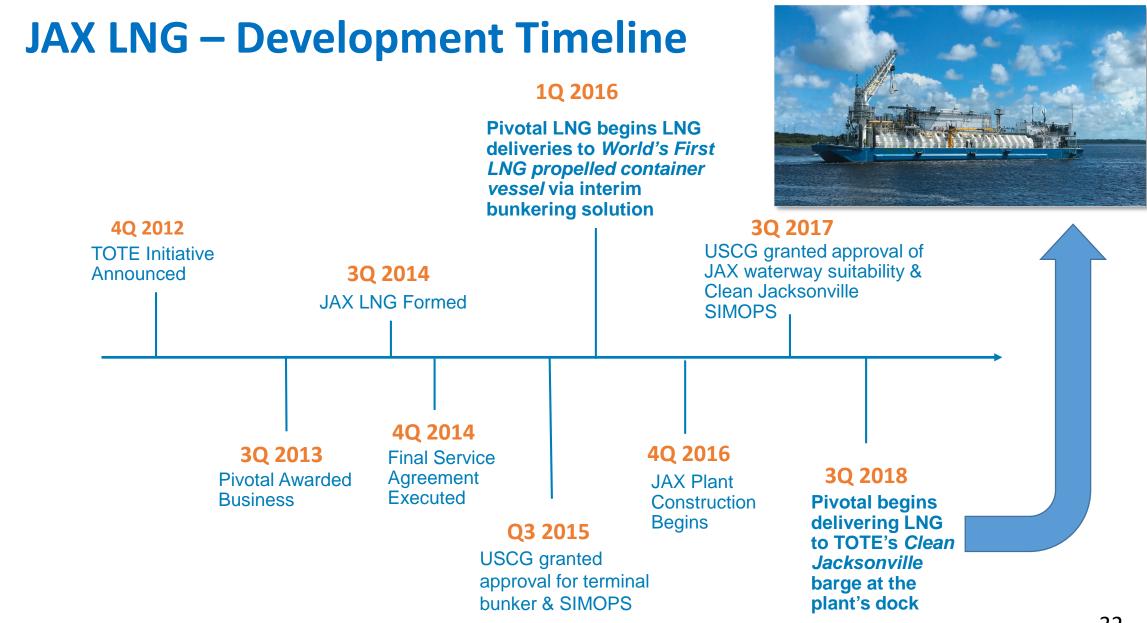
- 50/50 partnership between Pivotal LNG and Northstar Midstream, a subsidiary of OakTree Capital Partners and Clean Marine Fuels
- Completed the construction of the JAX LNG facility in the port of Jacksonville, FL; in service September 2018
- First facility in the USA to deliver LNG into a bunkering vessel
- Plant capacity expandable 5x
- Plant operated by Pivotal LNG and Southern Company Gas

Trussville LNG Plant

- Located east of Birmingham, AL
- Storage tank: 4.9 million gallons (18,500 m3)
- Production: 60,000 gallons per day 225 m3/d
- Two truck loading scales
- Three truck loading racks
- Fully staffed for 24/7 operations

Jacksonville LNG Plant

Jacksonville LNG Plant – Then and Now



Redevelopment of an abandoned gypsum / sheetrock plant

Jacksonville LNG Plant – In Service Sept 2018

- Initial liquefaction capacity 120,000 gpd (450 m3/d)
- On-site LNG storage 2.0 million gallons (7,500 m3)
- Expandable to 5x (600,000 gpd / 4.0 million gallons storage)
- 38 acre brownfield site at Dames Point in Jacksonville
- Dock with marine loading arms
- Two truck loading/unloading racks with scales
- Firm natural gas supply and transportation to plant
- 10 MW on-site generation powers all plant equipment
- Facility manned 24 x 7 x 365
- Control systems integrated with seven other Southern Company plants

LNG Deliveries – Terminal Solution

Interim LNG bunkering solution built by TOTE and operated by Pivotal LNG No safety incidents or spills

JAX LNG Plant – Tailwinds

- We are working with a focused and dedicated customer
- Tremendous collaboration with USCG and First Responders
 - Rigorous and thorough; committed to best practices
- Progressive and supportive Port Authority
- Pragmatic community and political culture in Jacksonville appreciated the project's environmental and economic benefits
- Brownfield site reduced permitting lead time
- Pivotal LNG's Trussville plant offered a firm supply source years before a new plant could be built in Jacksonville
- IMO decision to implement emissions cap in 2020

JAX LNG Plant – Headwinds

- Experience can work against you in a bidding environment
- Balancing long term vision for dock with design and construction schedule
- Compact site had to accommodate vapor dispersion and thermal radiation zones
- Vapor dispersion modeling techniques are time consuming and are challenged to keep up with the faster pace of small scale plant development
- Uncertain quality and price of commercial power available to site
- PHMSA's approach to overseeing small scale LNG plants is evolving

Key Elements of an LNG Supply Project

- Defined customer demand
 - What to build? Where? Configurations? Size/Scale?
- Feasible Site
 - Size / buffer zones
 - Environmental impacts (history, wetlands)
 - Access to natural gas supply system with available capacity
 - Proximity to navigable waterway and available gas supply
- Supportive / collaborative stakeholder groups
 - Regulatory Agencies, First Responders, Port Authorities, etc.
- Educated and pragmatic public and political environment
- Reliable and experienced LNG supplier that will follow through

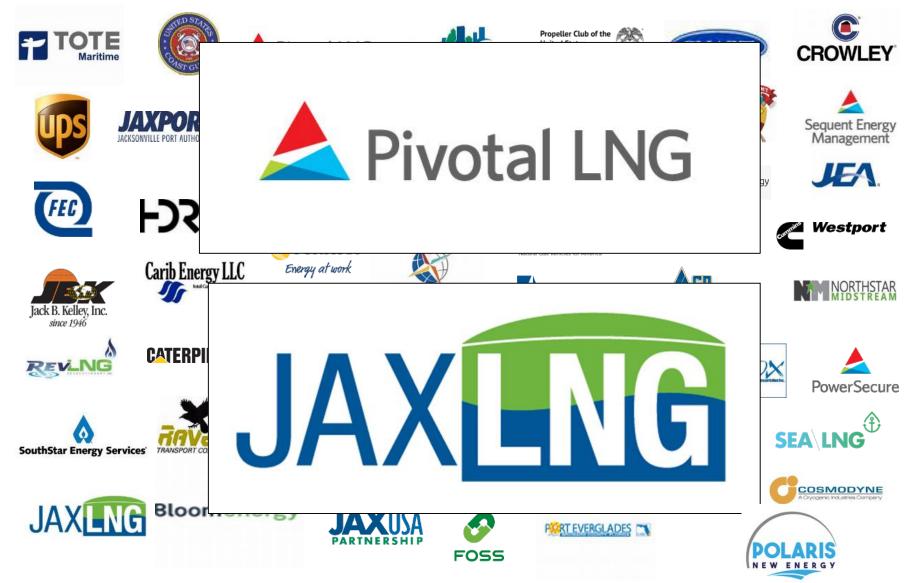
LNG Facilities and Buffer Zones

(aka Vapor Dispersion and Thermal Exclusion Zones)

- NFPA 59A Dictates Methods for Determining Required Buffer Zones based on spill and fire scenario modeling
- Different configurations have different models to satisfy
 - If connected to a PHMSA-regulated pipeline, 2001 vintage of NFPA 59A applies, resulting in larger buffer zones
 - If only configured for marine, truck and/or rail loading, different model requirements are required, which generally decrease required buffer distances ("marine loading facility")
 - Engineers often focus on the tank, but vapor dispersion at the loading flange is often the limiting factor, affecting transfer rates and pressures
- Tank without liquefaction can be installed on a much smaller site
 - Primarily due to reduced buffer zone requirements dictated by code
- Three port configurations based on availability of land and gas supply
 - Liquefaction, Tank and Bunkering; Tank and Bunkering; Bunkering Only

JAX LNG – Lessons Learned

• It all starts with the customer


- LNG initiatives in Jacksonville began when TOTE led the way
- Customer / supplier / public stakeholder collaboration is key
 - Working together to solve unique challenges related to lack of standardization as industry evolves

Different ports will have different solutions

- Availability of a feasible site
- Gas supply availability
- Public and political environment

Many informal partnerships worked together to drive success at JAX

LNG Partners Needed For Success

