

Revolutionizing the Working Waterfront (Communications)

> Mike Kemp Sales Director Rajant Corp. <u>mkemp@rajant.com</u>

(908) 963-8002

An introduction to Rajant

	What We Do	Exclusive provider of peer-to-peer, private Kinetic Mesh [®] networks consisting of BreadCrumb [®] wireless nodes powered by Rajant's patented InstaMesh [®] networking	Who Is Rajant? Private, secure wireless
5	Founded	Software. Established in October 2001 in Wayne, Pennsylvania, USA by co-founders Robert Schena and Paul	metwork technology for mission critical industries
<u>کې</u>	Туре	Hellhake Privately held	and government.
	Headquarters	Malvern, Pennsylvania, USA; additional offices in Alabama,	BANDWIDTH High Speed & Low Latency
Ţ.	Patents	Multiple patents including InstaMesh [®] (U.S. Patent 8,341,289 B2).	MOBILITY / RESILIENCY Seamless and Instantaneous
	Industries	Mining, ports, oil and gas, petrochemical, transportation, manufacturing, agriculture, utilities, municipalities, public	Joining, Leaving & Moving of Network Assets
	Area Served	safety, service providers, military, federal and state government. Worldwide.	SMART Higher Performance from
S	Installations	Thousands of satisfied customers.	Greater Scale. Mitigate the affects of range, Non-Line-of-Sight and Network Traffic.

OPERATIONAL REALITIES: Port Communications Challenges

Complex, massive, aging infrastructure

Multiple, disparate networks meeting different security and operational needs.

•••		
	_	=
=		_
—		

ແ____ ແ____ Enormous volume of large, **constantly moving containers that create obstructions** and restrict signal range.

Security concerns, with terrorists knowing that striking a port facility can significantly impair a nation's economy

Port environments are often exposed to extreme weather and temperature fluctuation.

Need for **real-time information to direct the flow** of goods, personnel, and vehicles.

ſ	7		1
F	-	-	2
F		-	-

Outgrown wired infrastructure – wired build-outs and laying cable are not feasible in commissioned ports.

٢	
	\mathbb{N}
IL	

Meeting tenants' varied needs to safely and efficiently move cargo on and off ships, repair vessels, and adequately supply ship.

ά	2
\simeq	γ

Diverse community of users involved in operations require secure, anytime-anywhere access to data, voice, and video.

OPERATIONAL REALITIES: Top 5 Challenges in Achieving Mobile Port Connectivity

Aging Mobile-Limited

Over time, static networks are expanded beyond capacity, especially with increased data volume demands.

Signal Interference

An increasing number of ground vehicles, quay cranes, forklifts, and people.

Security Facto

Ports have become high risk targets for terrorism and other malicious breaches.

Lack of Redundancy

Wireless equipment more likely to fail when exposed to harsh coastal environments.

Real Time Data Disruptions

Customers, tenants, international agencies, and numerous moving parts

Mitigating Signal and Range Obstructions

Large mental containers and their subsequent movement can **impede signal range** for many wireless communication systems. Using a multi-transceiver, multi-frequency, mesh network can dynamically redirect information packets around this interference providing the fastest possible throughput.

ADVANCING PORT OPERATIONS:

Video Surveillance

High bandwidth to stream video from remote cameras to dispatchers, first responders, etc.

Remote Access

Enable first responders and security officials to retrieve critical information while on the move.

Improved Situational

Allow dispatchers to instantly view incident details, analyze alerts, and get responders onscene fast.

Enhanced Evidence

Gathering

Capture and disseminate IP-based video evidence for investigation and prosecution

Drone Communications

Our drone BreadCrumb module can be supported on the mesh for surveying and other monitoring functions

ADVANCING PORT OPERATIONS: Fleet Management

Globally, seaports must manage thousands of quay cranes, trucks, and other fleets of automotive vehicles.

- With mesh wireless nodes deployed on a variety of vehicles, a mesh network can help you maintain communications with and control of UGVs, and AGVs (Automated Guided Vehicles), forklifts, and trucks as they roam among cranes and containers.
- A mesh network supports next-gen applications for:
 - Asset management / tracking
 - Vehicle / truck health monitoring
 - GPS location tracking
 - Automatic truck identification
 - Vehicle automation

ADVANCING PORT OPERATIONS: The Real ROI.

What can a Kinetic Mesh® network help your port achieve?

Improved Productivity

Maximize efficiency through mobile access to data, decision-making information, etc.

At peak efficiency, a single crane can move about **40 shipping containers per hour.**

Decreased Downtime

Access real-time maintenance information to proactively address issues, especially for 24/7 equipment.

A condition-based monitoring system can save as much as **20% in decreased spare parts**.

Strengthened Security

Reduce losses and damage with better situational awareness and first responder collaboration.

When ports on the west coast closed, it cost the U.S. \$1 billion dollars a day.

Increased Revenue

Increase capacity to support new service offerings and handle larger volumes.

Adoption of automation is expected to increase productivity in ports by about 30%.

Thank you!

PORT OF ANTWERP

Innovation, Digital Transformation & Global Port Connectivity

Revolutionizing the Working Waterfront

AAPA Conference – Norfolk, Virginia – October 15, 2019

Agenda

- Intro the new Vision & Mission statement from Port of Antwerp
- Digital Transition & Innovation strategy ...building the "Port of the Future"
- Data Sharing platform: NxtPort
 ...building the Highway for the Digital Supply Chain

 Global Port Connectivity through IPCSA's Network of Trusted Networks

Reliable supply chain

Unique maritime connectivity

Direct services to **1024 ports** worldwide

a home port vital for a sustainable future

The port of the future is smart, sustainable, innovative, accessible and safe.

5 strategic priorities for 2020

growth

Sustainable growth

2018-2019 : 5 billion euro New Investments strengthen our Chemical Cluster

Port of the Future: An insight on the innovation strategy and pilot projects

Our innovation strategy

INTERNET OF THINGS

NINNIN N

DRONES

SMART SHIPS

HIBIRINE ST

26.0172

2

Echodrone Autonomous monitoring sedimentation

DRONES

南

- BVLOS Oil spill detection Antwerp Port Area
- Parcel delivery from Wijnegem Shopping Mall
- Simulated parcel delivery Antwerp Port Border
- Medical parcel delivery
- High tension line inspection/mapping
- Overhead line incident intervention and pylon inspection
- Port inspection of criminal offenses
- Inspection container terminal for Port Authorities
- Monitoring cooperative and non-cooperative drones

Machine Vision (Image object recognition)

ACTIVE

APICA INFORMATION & CONTROL ASSISTANT

ACTIVE

APICA INFORMATION & CONTROL ASSISTANT

NxtPort's Mission

Make our ports and the related transport & logistics chain better, safer, more efficient and more profitable

 $\lambda \leq 1$

Public and private sector hand in hand. Together !

Trust

To overcome this challenge requires

Collaboration.

A coalition of the willing.

Community facilitator through co-creation.

With Golden Principles :

- Everybody is welcome as data provider or as data user.
- NxtPort platform is low entry barrier initiative (cost+) – benefits or "value at stake" falls within the industry.
- Data providers always stay owner of the data and decide in what context their data can be used.
- Strict divide between data layer and applications layer. NxtPort runs the data platform, app creation is left to "the market".
- Data users "share" profit as and when added value is created on the data. Monetization of data.

Visibility as an enabler to increase cargo handling capacity

- E2E full visibility
- Planning and execution
- Shift from maritime only to freight payer (shipper/consignee) or community
- Import Export flows / Re-use
- Water as a virtual warehouse/terminal

Data users "share" efficiency gains when added value is created on the data

International Port Community Systems Association

"to promote the electronic exchange of information to enable seamless, efficient trade logistics processes through a single submission of data connecting transport logistics".

IPCSA

al Port Community Systems Assoc

Where IPCSA is now

- Formed in 2011 by 6 leading European PCS
- 42 members operating in 41 Countries.
- 1 million + users within our members around the world
- Estimated 20 bn + electronic messages a year
- Members currently handle the exchange of information
 - over 250 air and sea ports,
 - over 500m TEU and 8bn tonnes of cargo.
 - Up to 50% world maritime trade going through members systems
- 5 Regions matching those of UN Regional Commissions
- IPCSA membership is open to:
 - ✓ Air and Sea Port Community System Operators
 - ✓ Air and Sea Port Authorities
 - ✓ Single Window Operators
 - International and Regional Organisations

Network of Trusted Networks (NoTN)

Thank you !

Nico De Cauwer

Business Architect Digitalisation & Port Community Projects nico.decauwer@portofantwerp.com

AAPA Conference Virginia – October 15, 2019

Revolutionizing the Working Waterfront Driving Productivity, Efficiency, & Predictability through Truck Reservation Systems

Mark Higgins, Director Motor Carrier Experience

Key Challenges

October 17, 2018 9:44 AM

VIG In Queue Friday, October 11, 2019 9:44:37 AM

10-11-2019, Fri 09:44,

10 man

October 11,2019

LP33-B

Leveraging TRS Data

Turn Time Breakdown – Oct 2018 vs Aug 2019

TURNING THE TIDE: TRUCK RESERVATION SYSTEM IS DRIVING EFFICIENCY

Digitizing the Working Waterfront: A waterside perspective

Matthew Prumm, CPEng: Global Lead – Business Development

Vessel		
Arrival/Departure	Arrival	
 Vessel Name	Maersk Virginia	
Port	Port of Virginia	
Terminal	Example Berth	
 DWT	61609	
LOA (m)	292.08	
Beam (m)	32.95	
Longitudinal Windage Area (m ²)	6500	
Lateral Windage Area (m ²)	1000	
 Draft (m)	13	

8 B

0

0 0 0 0

8

o - 50m

		Analysis	Summary			
	nes					
50% M exceeda	BL		Fende	r Failure	Bollard Failure	
5	5 3 L		L	A		
6		4 M		М	В	
	Ма	ximum P2P	Vessel Motic	ns		
Surge (m)	Sway (m)	Roll (°)	Pitch (°)	Heave (m) Yaw (°)	
0.5	0.2	0.2	0.1	0.2	0.3	

DIRECTIONAL WIND ROSE

Environmental	Conditions
Wind speed (kn)	50
Wind direction (deg)	20
Current speed (kn)	0.1
Current direction (deg)	45
Wave height (m)	0.2
Wave period (s)	8
Wave direction (deg)	200

0 0 0 0 0 0 0 8 8 8 8 8 8

0 B

Thank you