Resisting Corrosion to Extend Service Life of Port Infrastructure

Brian Pailes, PhD, PE, NACE CP-4
Principal Engineer
Vector Corrosion Services
Corrosion

- Corrosion damage costs waterways and ports over $300,000,000 USD each year.
How do we protect infrastructure from corrosion?

• Barriers
 • Coatings
 • Concrete
• Cathodic protection
 • Galvanic and impressed current
• Corrosion resistant construction materials
 • Improved steel grades or composite materials
• Reduce exposure to contaminants
• Regular maintenance
Environment

• Most severe environment for ports?
 • **Tidal splash zone**
 • Repeated wet/drying cycles
 • High oxygen availability
 • Exposure to chlorides in salt and brackish water ways

What do we typically see in the tidal/splash zone of Ports?
Steel
Steel
Coatings don’t last for ever
Why are we putting our most corrosion susceptible material in the most severe environment using a short term barrier for protection?

Design decisions have a significant impact on the future of a structure.
Most common question I get as a corrosion engineer

• What can you do to protect my exposed steel sheet pile wall from continued corrosion in the tidal/splash zone?
 • Coat it...
 • More importantly Keep up with the coating...
 • Encase it in concrete.....

• Cathodic protection will not work above the water line
 • Unless its encased in concrete
Barriers

• Coatings
 • Provides barrier to contamination
 • Surface prep, surface prep, surface prep
 • Can’t say it enough!!

• Concrete
 • Provides a high pH barrier for steel
 • High pH passivates steel
 • Must control cracking
Cathodic Protection

• Will work on steel
 • Submerged in Water
 • Embedded in Soil and
 • Embedded in Concrete

• Galvanic
 • Set and “forget”
 • Don’t really forget about them!
 • Typically more durably
 • Typically higher cost
Cathodic Protection

• Impressed current
 • Typically cheaper to install
 • More control over protective current
 • Requires maintenance and monitoring to be effective over long term
Better Construction Materials

• Steel structures
 • Higher grade alloys
 • Can be extremely expensive

• Concrete structures
 • Corrosion resistant reinforcing becoming more available
 • Stainless, galvanized, stainless clad, GFRP, Carbon Fiber, MMFX and others
 • More expensive than conventional reinforced concrete
 • But much more cost effective to implement than a high grade steel structure
Asset Management

• Key to the effective service life of any infrastructure
 • Regular inspections
 • Effective maintenance with standardized high-quality repair procedures and materials
 • Transfer knowledge
Design Phase

• Have a material engineer perform a durability review
 • Can have a long lasting impact on structure’s service life
 • How can we design a concrete mix to limit cracking and chloride ingress?
 • Where are the best places for steel structures verses concrete?
 • How can we limit construction defects in barrier coatings?
Thank you!

Questions?