Resisting Corrosion to Extend Service Life of Port Infrastructure

Brian Pailes, PhD, PE, NACE CP-4 Principal Engineer Vector Corrosion Services

Corrosion

 Corrosion damage costs waterways and ports over \$300,000,000 USD each year

How do we protect infrastructure from corrosion?

- Barriers
 - Coatings
 - Concrete
- Cathodic protection
 - Galvanic and impressed current
- Corrosion resistant construction materials
 - Improved steel grades or composite materials
- Reduce exposure to contaminates
- Regular maintenance

Environment

- Most severe environment for ports?
 - Tidal splash zone
 - Repeated wet/drying cycles
 - High oxygen availability
 - Exposure to chlorides in salt and brackish water ways

What do we typically see in the tidal/splash zone of Ports?

Steel

Coatings don't last for ever

Why are we putting our most corrosion susceptible material in the most severe environment using a short term barrier for protection?

Design decisions have a significant impact on the future of a structure

Most common question I get as a corrosion engineer

- What can you do to protect my exposed steel sheet pile wall from continued corrosion in the tidal/splash zone?
 - Coat it...
 - More importantly Keep up with the coating...
 - Encase it in concrete.....

- Cathodic protection will not work above the water line
 - Unless its encased in concrete

Barriers

- Coatings
 - Provides barrier to contamination
 - Surface prep, surface prep, surface prep
 - Can't say it enough!!
- Concrete
 - Provides a high pH barrier for steel
 - High pH passivates steel
 - Must control cracking

Cathodic Protection

- Will work on steel
 - Submerged in Water
 - Embedded in Soil and
 - Embedded in Concrete
- Galvanic
 - Set and "forget"
 - Don't really forget about them!
 - Typically more durably
 - Typically higher cost

Cathodic Protection

- Impressed current
 - Typically cheaper to install
 - More control over protective current
 - Requires maintenance and monitoring to be effective over long term

Better Construction Materials

- Steel structures
 - Higher grade alloys
 - Can be extremely expensive
- Concrete structures

- Corrosion resistant reinforcing becoming more available
- Stainless, galvanized, stainless clad, GFRP, Carbon Fiber, MMFX and others
- More expensive than conventional reinforced concrete
 - But much more cost effective to implement than a high grade steel structure

Asset Management

- Key to the effective service life of any infrastructure
 - Regular inspections
 - Effective maintenance with standardized high-quality repair procedures and materials
 - Transfer knowledge

Design Phase

- Have a material engineer perform a durability review
 - Can have a long lasting impact on structure's service life

- Where are the best places for steel structures verses concrete?
- How can we limit construction defects in barrier coatings?

Thank you!

Questions?

