
Demystifying Resiliency Uncertainty & Decision Making Lynette Cardoch, PhD, LEED AP Director of Resilience & Adaptation

lcardoch@moffattnichol.com

Creative People, Practical Solutions.®

Rank	Date	Event	Insured loss
1	Aug. 25, 2005	Hurricane Katrina, storm surge, damage to oil rigs	82.4
2	Mar. 3, 2011	Fukushima earthquake (Mw 9.0) triggers tsunami	38.1
3	Sep. 19, 2017	Hurricane Maria	32.0
4	Oct. 24, 2012	Hurricane Sandy, storm surge	30.8
5	Sep. 6, 2017	Hurricane Irma	30.0
6	Aug. 25, 2017	Hurricane Harvey	30.0
7	Aug. 23, 1992	Hurricane Andrew, storm surge	27.9
8	Sep. 11, 2001	Terror attacks on WTC, Pentagon and other buildings	25.9
9	Jan. 1, 1994	Northridge earthquake (Mw 6.7)	25.3
10	Sep. 6, 2008	Hurricane Ike, floods, damage to oil rigs	23.1

Top 10 Costliest World Insurance Losses, 1970-2017 (2017 \$; SwissRe)

Business Continuity

Capacity of individuals, communities, institutions, businesses, and systems within a city to survive, adapt, and grow no matter what kinds of chronic stresses and acute shocks they experience.

(100 Resilient Cities, Rockefeller Foundation)

Acute Shocks

Floods Hurricanes Earthquakes HAZMAT incidents Traffic crashes Violent acts Tornadoes Funding Aging infrastructure Public transit Social inequity Crowding Violence Politics

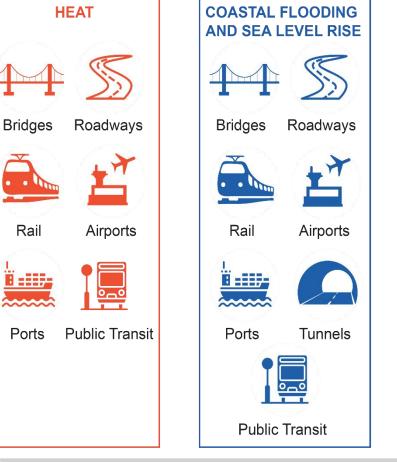
Climate variability Sea level rise New development in high hazard areas Heightened security

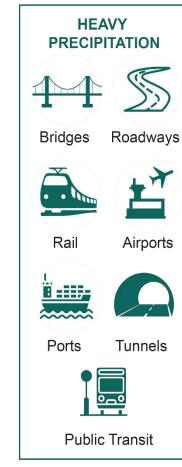
Chronic Stressors

Potential Accelerators

The Resiliency Lens: Fundamental Concepts

- Interconnectivity of systems
- Asset versus system resilience
- Acute shocks & chronic stressors


Interconnectivity of Systems



Interconnectivity of Systems

This Photo by Unknown Author is licensed under CC BY-SA

Climate Variability and Notable Vulnerabilities of Transportation Assets

National Performance Goals at Risk

Congestion Reduction

System Reliability

Safety

Environmental Sustainability

Freight Movement & Economic Vitality

Infrastructure Condition

Intermodal Implications: Port of Long Beach

- Temperatures > 90° F = Potential buckling and derailments
- Rail speeds slowed
- Increased inundation from SLR, prevent cargo from leaving piers

Fall

Port of Long Beach

Climate Adaptation and Coastal Resiliency Plan (CRP)

#1 Florida Petroleum Storage Port

- Since 1930s
- ±420 million gallons
- FLL and MIA pipelines
- Former Crude Pipeline
- Serve 12 Counties
- Consume tanker/day (±14 million gallons).

A DEPARTMENT OF HOMELAND SECURITY CENTER OF EXCELLENCE

	RESEARCH	TECH TRANSITION	EDUCATION	NEWS	EVENTS	ABOUT US	PEOPLE
CIPI rocoarch		stbed for cybe				News from Cl 03/19/2019 Kryptowire, C Buck Award 03/13/2019 CIRI introduce projects 02/07/2019 Resilience Cal to "bounce ba 02/04/2019 CIRI researche	
The A			A TELEVIS				

Interconnected Systems

Asset Resilience vs System Resilience

Hurricane Michael Mexico Beach, FL (October 2018) Decision Making in Light of Uncertainty

Scenario Planning

Probabilistic Approaches

Dynamic Adaptive Policy Pathways First Floor Elevation

Site Grading

Nuisance Flooding

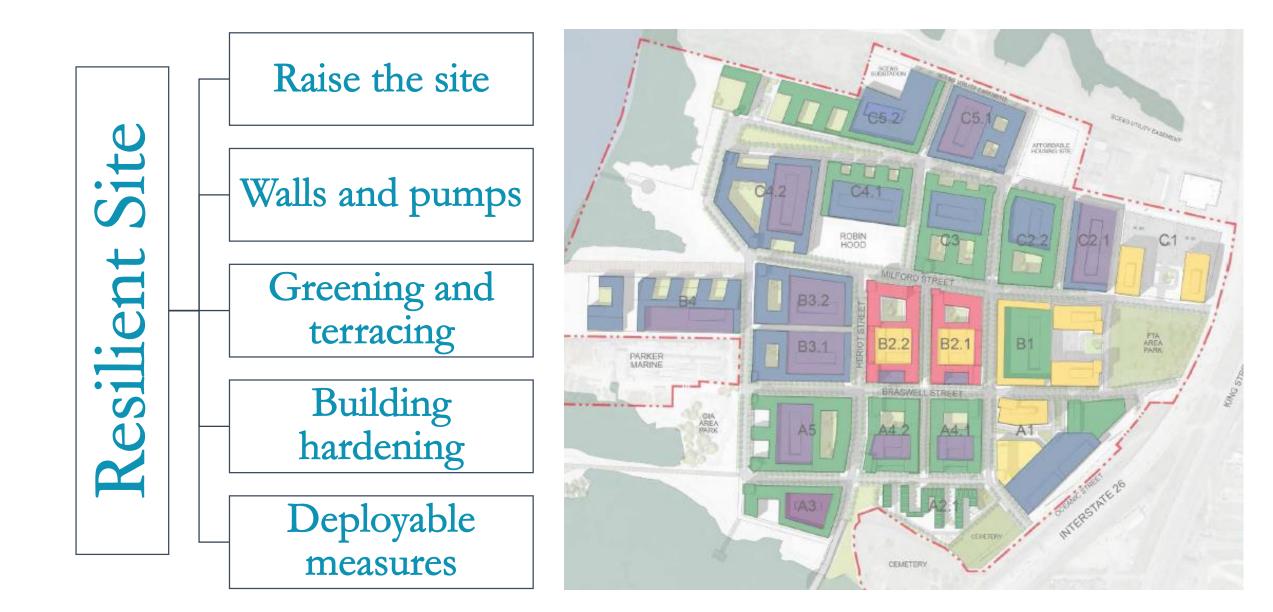
Greening Measures

Extreme Rainfall

Deployable Protection

Future Storm Surge Elevations

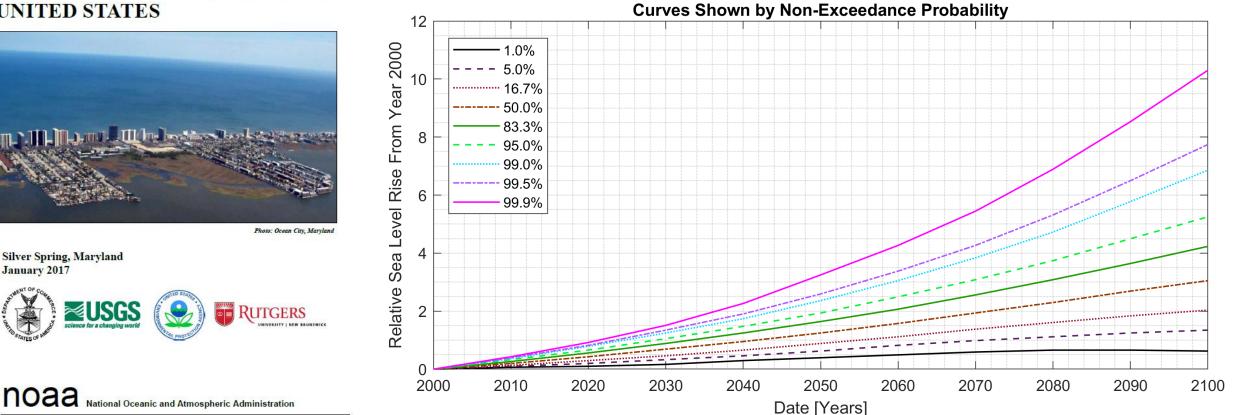
Storm Surge Probability


Sea Level Rise Probability

Economic Consequences

Trade-off Analyses

Resiliency | Right amount of flood-proofing improvements?



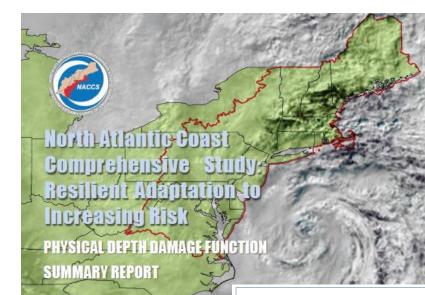
Resiliency | Sea Level Rise

NOAA Technical Report NOS CO-OPS 083

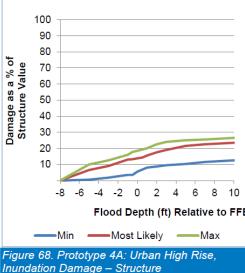
January 2017

GLOBAL AND REGIONAL SEA LEVEL RISE SCENARIOS FOR THE **UNITED STATES**

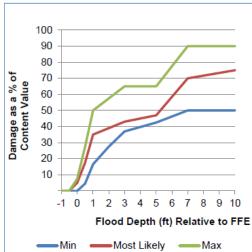
Sea Level Rise Projections From Kopp et al. (2017) - K14 RCP8.5


ILS DEPARTMENT OF COMMERCE National Ocean Service Center for Operational Oceanographic Products and Services

> Sea Level Rise Probability Projections for Charleston, South Carolina


Resiliency | Risk Tolerance

Elevation	Likelihood of Annual Maximum Storm Surge Elevation During Project Life (2020-2100)							
[ft NAVD88]	10 Years (2030)	20 Years (2040)	30 Years (2050)	40 Years (2060)	50 Years (2070)	60 Years (2080)	70 Years (2090)	80 Years (2100)
10.0	11.8%	23.1%	33.8%	44.1%	53.9%	63.4%	72.4%	80.2%
11.0	8.6%	17.0%	25.5%	34.0%	42.3%	50.6%	58.8%	66.8%
12.0	5.9%	11.9%	18.3%	24.9%	31.7%	38.9%	46.2%	53.6%
13.0	4.1%	8.3%	12.9%	17.8%	23.0%	28.7%	34.8%	41.2%
14.0	2.8%	5.8%	9.0%	12.6%	16.4%	20.7%	25.4%	30.6%
15.0	1.9%	4.0%	6.2%	8.7%	11.5%	14.6%	18.2%	22.2%
FFE: 16.0	1.3%	2.7%	4.3%	6.0%	7.9%	10.2%	12.7%	15.6%
17.0	0.9%	1.9%	2.9%	4.2%	5.5%	7.1%	8.9%	10.9%
18.0	0.6%	1.3%	2.0%	2.9%	3.8%	4.9%	6.1%	7.6%
19.0	0.4%	0.9%	1.4%	2.0%	2.6%	3.4%	4.2%	5.3%
20.0	0.3%	0.6%	0.9%	1.3%	1.8%	2.3%	2.9%	3.6%


Resiliency | Benefit Cost Ratio = Value

a % (nage ភ **US Army Corps** of Engineers.

Flood Depth	Min	Most Likely	Мах
-8	0	0	0
-5	0.5	6.5	10
-3	1.75	9	12.5
-1	3.5	13	16
-0.5	3.5	13.25	17.75
0	5.5	13.75	18.5
0.5	6.75	14.25	19.25
1	8	15.5	20
2	8.75	17.5	22.5
3	9.5	19	24
5	10.25	21.5	25
7	11.5	22.5	25.5
10	12.5	23.5	26.5


Table 26. Prototype 2: Commercial Engineered, Inundation Damage – Perishable Content							
Flood Depth	Min	Most Likely	Мах				
-1.0	0	0	0				
-0.5	0	0	0				
0.0	0	5	8				
0.5	5	18	28				
1.0	17	35	50				
2.0	28	39	58				
3.0	37	43	65				
5.0	43	47	65				
7.0	50	70	90				
10.0	50	75	90				

COST OF PROTECTION

$\frac{BENEFIT OF PROTECTION}{BENEFIT COST RATIO}$

gure 50. Prototype 2: Commercial Engineered, nundation Damage – Perishable Content

Reduce Operational Interruptions

Acute versus Chronic Stressors

Sea Level Rise Is Eating into Property Values

Seventeen coastal states lost nearly \$16 billion in relative property value from 2005 to 2017 because of tidal flooding, which is worsened by sea level rise, new research shows. The map shows where the losses have been greatest.

- Revenue Streams
- Tax Base
- Concentration of assets

OURCE: First Street Foundation

MISS.

ALA.

Gulf of Mexico

RELATIVE PROPERTY LOSS In millions of dollars by ZIP code

\$500M

\$250M

\$100M \$50M-

InsideClimate

MAIN

R.I.

N.H.

MASS.

N.J.

DEL.

Atlantic Ocean

CONN.

N.Y.

PENN.

MD.

VA.

N.C.

S.C.

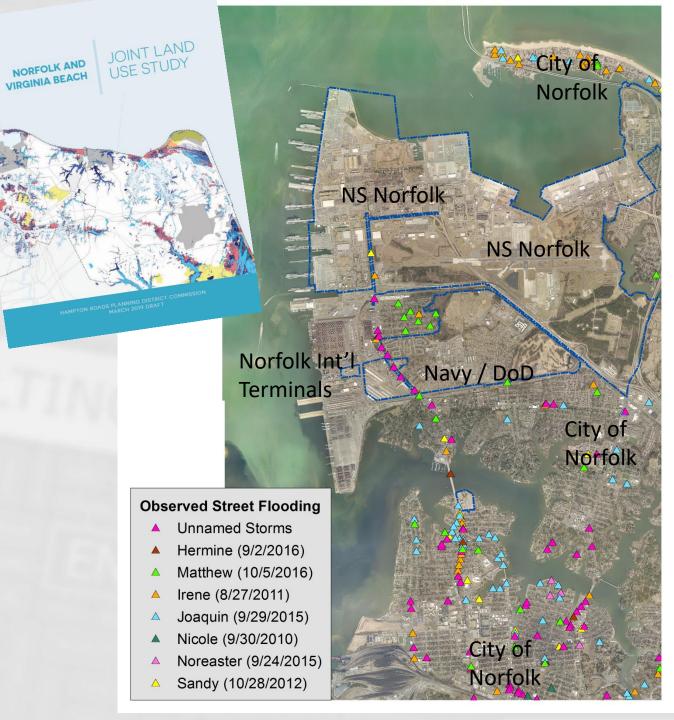
FLA.

GA.

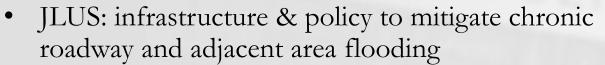
澍

Chronic Stressors

- Capacity and Condition
- Funding and Future Need
- Public Safety and Resilience

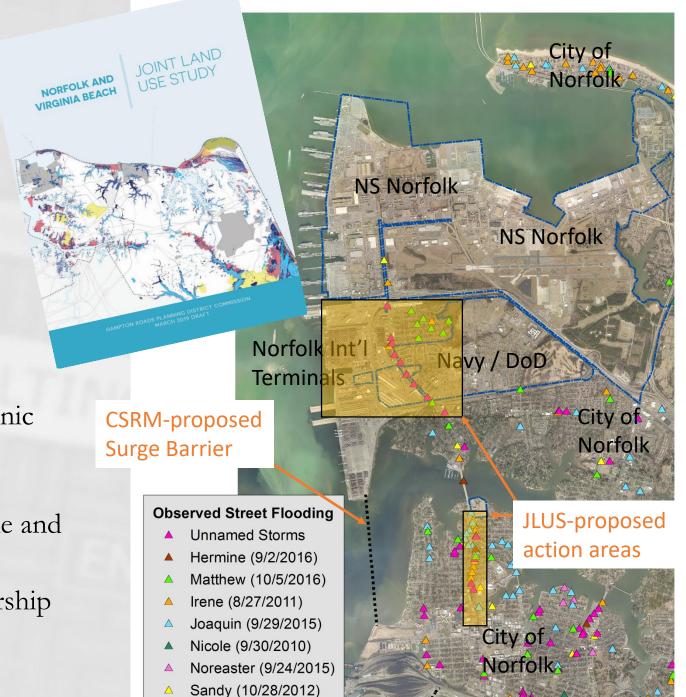

Future Storm Surge Consequence

Chronic Stressor: Sea Level Rise


- Threats
 - Sea level rise
 - Wind and wave driven storm surge
 - Riverine flooding
 - Extreme rainfall
- Consequences
 - Water damage
 - Loss of buildings and infrastructure
 - Operational disruptions
 - Occupancy reductions (future business)
 - No longer insurable

Chronic: Flooding Vulnerability Affecting Operations

- Regional economic engine: 36% employment
- DOD and Port of Virginia
- Critical infrastructure impacts: flooding arterial streets
- Collaboration: Cities, Port, Navy staff, DoD, others


US Army Corps of Engineers • of Engineers •

Final Integrated City of Norfo Coastal Storm Risk Management Feasibility

Study / Environmental Impact Statement

September, 2018

- Norfolk's USACE Coastal Storm Risk Management (CSRM): mitigate acute hurricane and nor'easter flooding
- Projects from both eligible for Federal partnership & funding; would be complementary

moffatt & nichol

Decision Making with the Resiliency Lens

- Uncertain future vs confidence in actions
- Regional resiliency assessments
- Multi-jurisdictional cooperation
- Robust asset management
- No regrets

moffatt & nichol

Creative People, Practical Solutions.®

THANK YOU!

moffattnichol.com