

Facilities Engineering Seminar April 24-26, 2019 Jacksonville, FL

Panel I: Tech Forum: Using Tech to Extend Infrastructure

ENHANCING LIVE LOAD-CARRYING CAPACITY OF EXISTING INFRASTRUCTURE FOR EXTENDED LIFE SPAN

Mohsen Shahawy, PhD, PE (Principal)
Hatem Seliem, PhD, PE, PMP (Senior Structural Engineer)

OUTLINE

- ☐ Fiber-Reinforced Polymers
 - Material Properties
 - Common Types / Application Techniques
 - Advantages of FRP
- □ Advanced Computing Techniques
 - Advanced Structural Analysis
 - Soil-Structure Interaction
 - Damage Assessment
- ☐ Testing and Instrumentation
- ☐ Selected Projects

OUTLINE

- ☐ Fiber-Reinforced Polymers
 - Material Properties
 - Common Types / Application Techniques
 - Advantages of FRP
- ☐ Advanced Computing Techniques
 - Advanced Structural Analysis
 - Soil-Structure Interaction
 - Damage Assessment
- ☐ Testing and Instrumentation
- ☐ Selected Projects

Constituent Materials

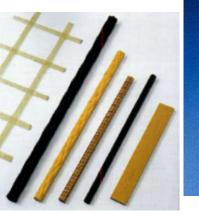
Fibers: Glass Resins:

Carbon

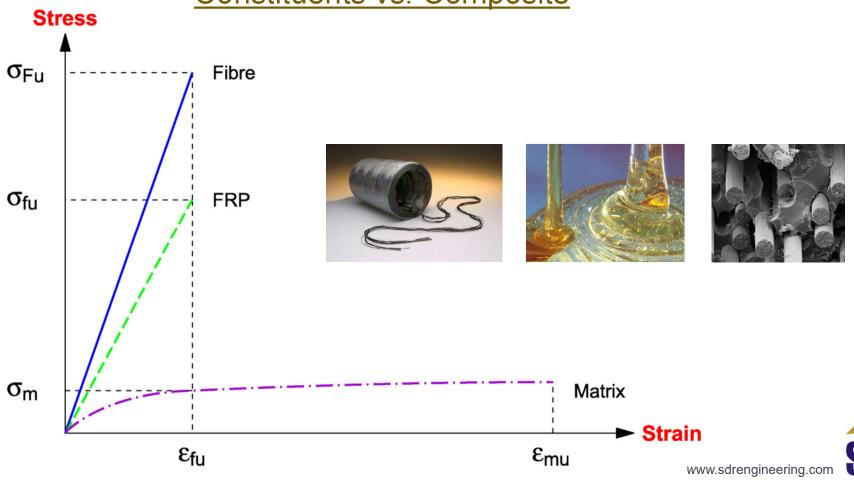
Aramid

Epoxy

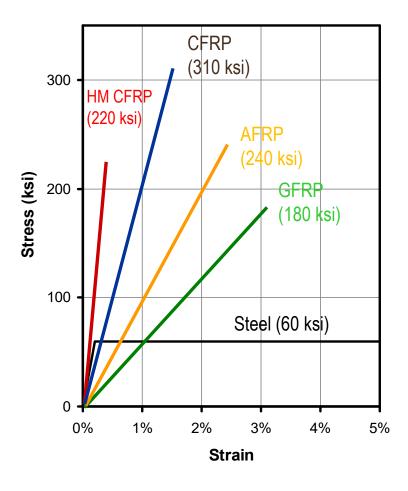
Polyester


Vinyl esters

Glass Fiber Reinforced Polymers (GFRP)


Carbon Fiber Reinforced Polymers (CFRP)

Aramid Fiber Reinforced Polymers (AFRP)



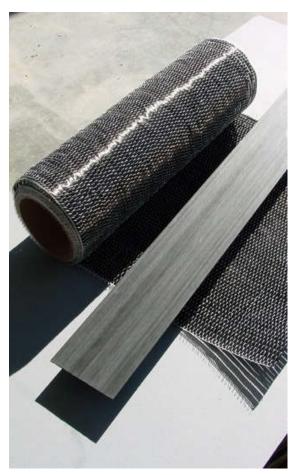
Mechanical Properties

Advantages of FRP

- ✓ High strength-to-weight ratio
- ✓ Excellent durability
- ✓ Non-magnetic, Non corrosive
- ✓ Low profile when installed
- ✓ Fast and easy application

Table 4.2.1—Typical densities of FRP materials, lb/ft³ (g/cm³)

Steel	Glass FRP (GFRP)	Carbon FRP (CFRP)	Aramid FRP (AFRP)
490	75 to 130	90 to 100	75 to 90
(7.9)	(1.2 to 2.1)	(1.5 to 1.6)	(1.2 to 1.5)


ACI 440.2R

Common Types of CFRP

Wet lay-up systems

Pre-cured Laminates

Common Types of FRP

Wet lay-up

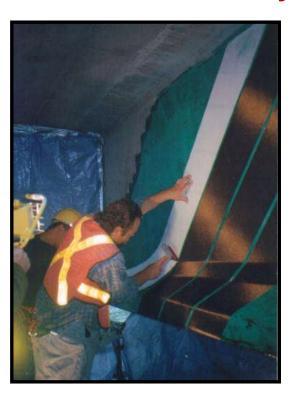
Dry fiber sheets or fabrics impregnated with resin on-site

Pre-cured

Pre-cured Composite shapes manufactured off-site

Pre-preg

Pre-impregnated uncured fiber sheets or fabrics



Application Techniques

Externally Bonding (EB)

Application Techniques

Near-Surface-Mounted (NSM)

NSM Strips

Application Techniques

Wrapping

Reasons to Retrofit with FRP

- □ Increase load-carrying capacity
 - Flexure strengthening, shear strengthening, axial load strengthening
- Impact damaged structures
- Ductility enhancement
- Blast mitigation
- □ Structural upgrade and seismic retrofit
- Cutouts and penetrations

Durability

- Environmental considerations
 - Alkalinity/acidity
 - Thermal expansion
 - Electrical conductivity
- Loading considerations
 - Impact tolerance
 - Creep rupture and fatigue

Durability

- □ Environmental reduction factor (conservative estimates)
 - Fiber type & exposure conditions
- □ Protective coatings
- □ Projects that are more than 30 years old

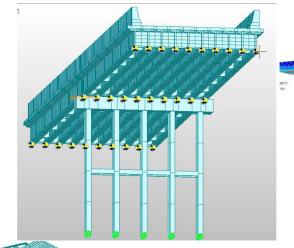
Table 9.4—Environmental reduction factor for various FRP systems and exposure conditions

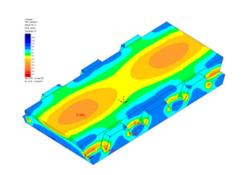
Exposure conditions	Fiber type	Environmental reduction factor C _E
	Carbon	0.95
Interior exposure	Glass	0.75
	Aramid	0.85
Exterior exposure (bridges, piers, and unenclosed parking garages)	Carbon	0.85
	Glass	0.65
and unenclosed parking garages)	piers, ages) Glass Aramid	0.75
Aggressive environment (chemical	Carbon	0.85
plants and wastewater treatment	Glass	0.50
plants)	Aramid	0.70

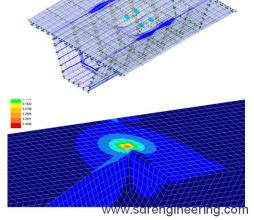
ACI 440.2R

OUTLINE

- ☐ Fiber-Reinforced Polymers
 - Material Properties
 - Common Types / Application Techniques
 - Advantages of FRP
- ■Advanced Computing Techniques
 - Advanced Structural Analysis
 - Soil-Structure Interaction
 - Damage Assessment
- ☐ Testing and Instrumentation
- ☐ Selected Projects

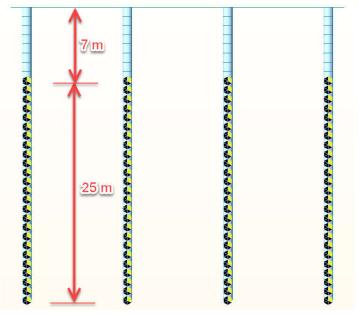

Advanced Structural Analysis

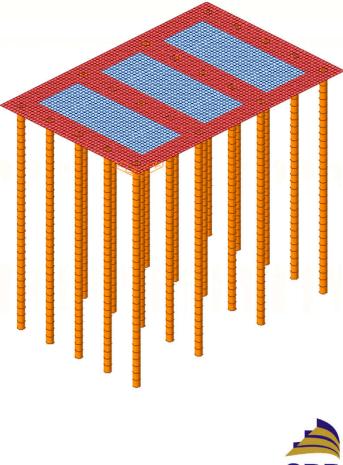

Finite Element Analysis (FEA)


Non-linear analysis

Geometrical non-linearities

Shell elements, solid elements



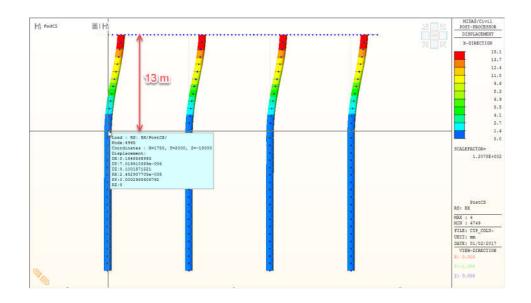

Soil-Structure Interaction

Piles: beam elements

Soil springs (P-y curves)

- ✓ Lateral springs
- √ Vertical springs





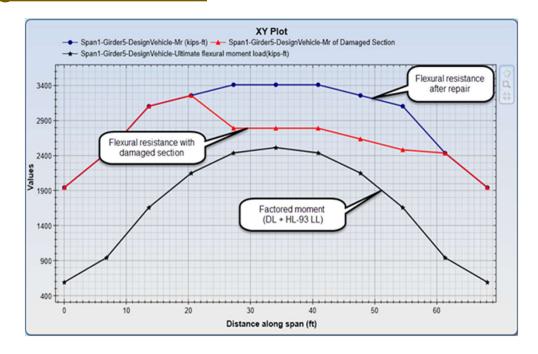
www.sdrengineering.com

Soil-Structure Interaction

Gravity Loads

Lateral Loads

Damage Assessment


Section loss

Corrosion of steel

Loss of bond

Deterioration

SMART BRIDGE SUITE

OUTLINE

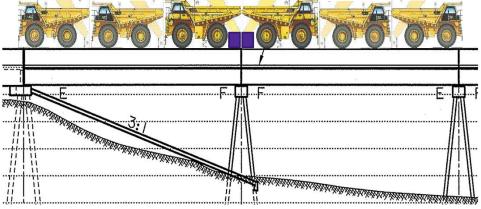
- ☐ Fiber-Reinforced Polymers
 - Material Properties
 - Common Types / Application Techniques
 - Advantages of FRP
- ☐ Advanced Computing Techniques
 - Advanced Structural Analysis
 - Soil-Structure Interaction
 - Damage Assessment Tools
- ☐ Testing and Instrumentation
- ☐ Selected Projects

Load Testing

- Actual behavior of structure (load distribution)
- Strength enhancing factors not included in calculations
 - Composite actions
 - Continuity/fixation
 - Secondary members
- □ Static tests (proof test and diagnostic test)
- Dynamic tests

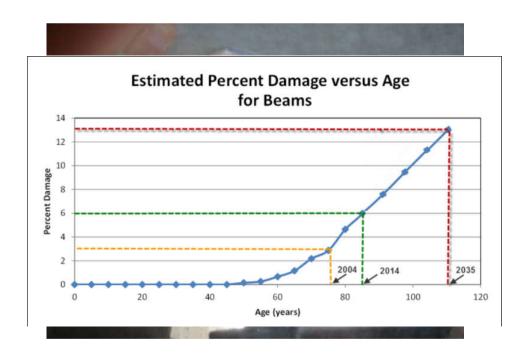
Load Testing

Counter weights



Trucks with known weights

Load Testing

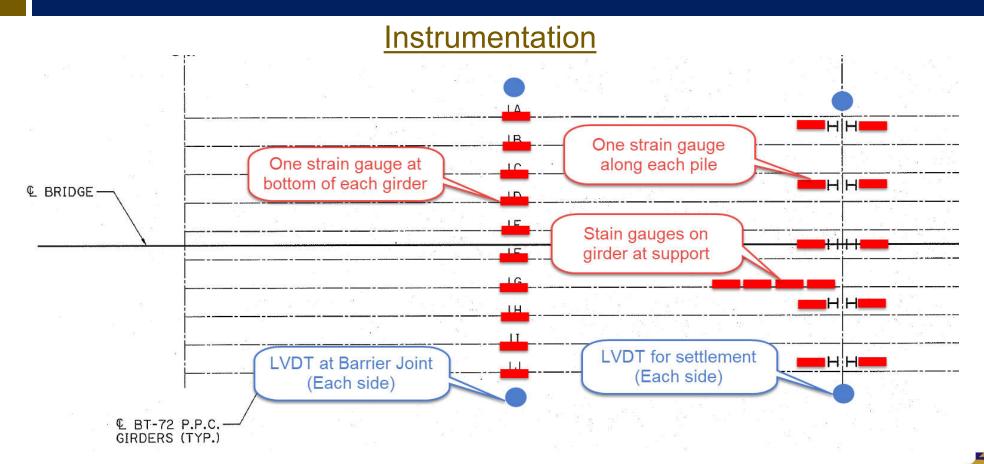


Non-Destructive Testing

Chloride Ion Penetration

Cover removal and reinforcement inspection

Instrumentation



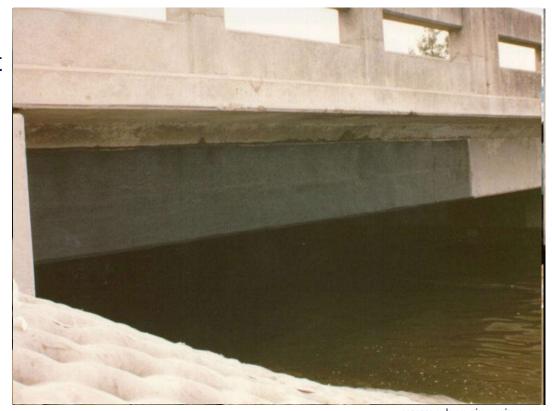
Instrumentation plans are developed based on analysis of structure.

OUTLINE

- ☐ Fiber-Reinforced Polymers
 - Material Properties
 - Common Types / Application Techniques
 - Advantages of FRP
- ☐ Advanced Computing Techniques
 - Advanced Structural Analysis
 - Soil-Structure Interaction
 - Damage Assessment Tools
- ☐ Testing and Instrumentation
- ☐ Selected Projects

Allen Creek Bridge Clearwater, FL 2005

- √ Wrapping of piles
- ✓ Underwater application
- √ Splash zone



www.sdrengineering.com

<u>US 1 Bridge</u> <u>Melbourne, FL 1994</u>

- ✓ Corrosion of main reinforcement
- ✓ Girders repair
- ✓ Concrete section restoration

www.sdrengineering.com

Rockaway Line Viaduct New York, NY 2009

- ✓ Corrosion of reinforcement
- ✓ Girders repair
- ✓ Concrete section restoration

I-10 Bridge Over L&A Railroad LA 2016

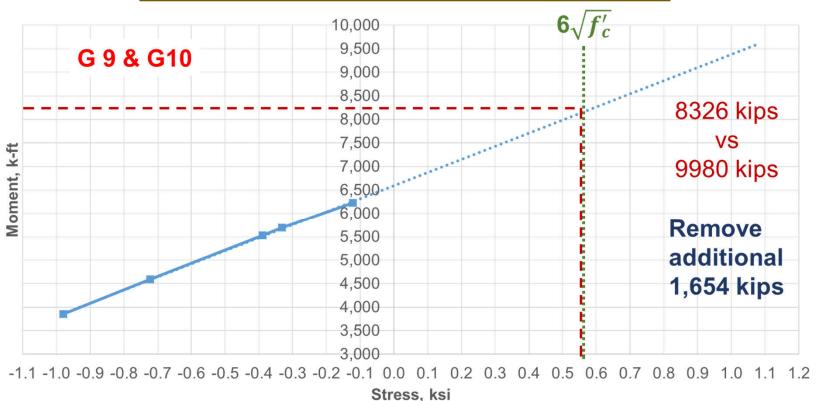
- √ Strengthening of deck slab
- ✓ Instrumentation & proof testing

www.sdrengineering.com

Bayou Pierre Bridge Desoto & Red River Parishes, LA 2018

46-AXLES SPMT

390 KIPS TRUCKS


5-Span with total length of 500 ft.

10 PPC girders

10,000 kips (4,500 tons) DRAGLINE

Bayou Pierre Bridge Desoto & Red River Parishes, LA 2018

Compression

Tension

www.sdrengineering.com

Bayou Pierre Bridge Desoto & Red River Parishes, LA 2018

