

Structural Strengthening Using Composite Materials 18 June 2019

By: Eri Vokshi, P.E evokshi@cs-nri.com | cs-nri.com

Presentation Overview

- Who is CS | NRI?
- Overview of composites and their application in submerged environments
- How composites work?
- Case studies
- The design and implementation process

Company Overview

- CS|NRI is the leading provider of high-performance repair, rehabilitation, and construction products for global critical infrastructure
- Relentless focus on safety, innovation, and stewardship of customer assets and the environment.
- Solutions driven, manufacturing firm and ASME, ISO and ACI compliant composite materials firm
- State-of-the-art, ISO 9001-certified manufacturing and R&D facilities across the world
- Best-in-class design, engineering, testing, and training services to ensure proper installation and optimal performance

In-house Resin Formulation & Manufacturing

- Extensive in-house testing services to verify key physical properties:
 - Tensile properties
 - Fiber and resin compatibility
 - Glass transition temperature of the material
 - Chemical compatibility
 - Adhesion to surfaces
- Fiber Manufacturing Capabilities
 - 11 needle looms
 - 1 multi axial stitch bond knitting machine

COMPOSITE OVERVIEW

Composites: What are they?

- Combination of fabric and resin that form an extremely strong monolithic material
- Designed to share the loads & stresses with the host substrate

CLOCK SPRING **NR**Í

Why chose composite repairs

Types of composite strengthening materials

Types of Composite Strengthening Materials for Underwater Piles

Field vs Pre Saturated Wet Layup Systems

Standard Epoxy Systems

Field vs Pre Saturated Wet Layup Systems

Factory-Saturated System

STEPS ELIMINATED WITH PRE-SATURATED SYSTEMS

- Provide saturating resin
- Mix epoxy saturant
- Set up saturator
- Saturate fabric (saturator or table/rollers)
- Clean up saturator and tools
- Dispose of resin pails

Damp Application/ Underwater Product

- Most of the strengthening applications are done in dry environment.
- NRI offers a variety of products that can be used in damp or submerged environments in order to minimize down time and overtime charges

HOW DO COMPOSITES WORK?

CLOCK SPRING NRI

Z

Confinement

Reinforcement is accomplished by utilizing tensile strength of composite system

Column Wrapping

- Increase in both axial and flexural strength
- Commonly used for seismic retrofitting
- Most efficient reinforcement in circular columns

Confinement

Flexural Strengthening

Reinforcement is accomplished by utilizing tensile strength of composite system

- FRPs can strengthen reinforced and pre-stressed members
- Beams, slabs, walls, etc.
- Increases in bending capacity is a function of FRP stiffness and thickness

Flexural Strengthening

Standards and Design Guides

 Reinforced concrete design Guides available ACI 440.2R-08 ISO 14484

Steel and Timber Strengthening

- No governing standard conservative approach
 - Published guidelines
 - Research papers (Empirical)
 - Engineering first principles
- Iterative process with client
 - Safety factors

NATIONAL RESEARCH COUNCIL

ADVISORY COMMITTEE ON TECHNICAL RECOMMENDATIONS FOR CONSTRUCTION

Guidelines for the Design and Construction of Externally Bonded FRP Systems for Strengthening Existing Structures

Metallic structures

Preliminary study

CNR-DT 202/2005

Steel Details		
Depth	2	mm
Yield Strength	235	MPa
Young's Modulus	200	GPa
Yield Strain	1.18E-03	

Composite		
No. of layers	2	
Depth	1.10	mm
Compressive Strength	320	MPa
Tensile Strength	894	MPa
Flexural Modulus	71.6	GPa
Factored Flexural Modulus	47.7	GPa
Compressive Yield Strain	6.70E-03	
Tensile Yield Strain	1.87E-02	
REP thickness	5	mm
Factored REP thickness	3.33	mm

Deck Geometry		
Total Depth	6.43	mm
Width	1	m
Span	1.17	m

Safety factors		
ifetime (years)	10	
ifetime SF	1.30	
REP thickness SF	1.5	
Composite material SF	1.5	
ive load SF	1	
Dead load SF	1	

Load		
Unfactored Live load	1.9	kN/m²
Factored Live load	2.85	kN/m²
Self weight	0.15	kN/m²
Additional Dead Load	0	kN/m²

USE OF COMPOSITES IN STRUCTURAL STRENGTHENING

Application – Reinforced Concrete

- Structural strengthening due to: loss of strength, change of use, design error
- Beams, columns, slabs, walls, pipe supports, pilings, concrete tanks.
- Above and underwater applications

Application – Wood/Timber Piles

- Wood power poles
- Marine pile strengthening and protection
- Soil to air interface protection against rotting

Application – Steel Substrate

- Corrosion protection and strengthening
- Decks, caissons, hollow sections, and non-critical structural members (columns, beams, truss members)
- Above and underwater applications

CASE STUDIES

CLOCK SPRING NRI

APM Terminal, Peru

- A large shipping terminal in Lima Peru is experiencing deterioration due to aging, weathering, and extensive use of the terminal for large ships
- Approximately 300 pre-stressed reinforced concrete pilings.
- Underwater inspection different levels of damage, including loss of concrete and exposed steel prestressing wires.
 - A. Severely damaged piles with >40% capacity loss
 - B. Highly corroded, spalled piles
 - C. Cracked and corroded stained piles
 - D. Minorly cracked piles

APM Terminal Trial Project

- Syntho-Shore provided a simpler solution for strengthening and protection of the shipping terminal's underwater piles.
- Syntho-shore is the first test-proven, underwater product in the market
- Selected for a trial project to wrap 2 pilings
- Installed successfully, in less than one hour, by divers who had not previously worked with the product.
- Project has advanced and the owner will wrap over 1,300m in pile length with Syntho-Shore product by September 2019.

Vale, Brazil Project

- 1mile (1.67 km) bridge with more than 147 underwater piles, maintained by Vale in São Luís (MA), Brazil
- Existing piles are reinforced concrete, with steel jackets around them
- The original steel jackets were designed to be sacrificial
- A need to increase the capacity of the bridge has resulted in the necessity for the steel jackets to perform as structural elements
- Syntho Shield was selected due to:
 - minimal surface prep requirements,
 - speed of installation,
 - excellent impact and corrosion prevention
 - low mobilization costs

12" OD Timber Piling Repair, USA

- 12" OD wood piling experienced severe damage due to marine bore attack on the splash-zone area
- Foreign matter and marine growth were removed using a high-pressure water blast.
- A high density polyethylene (PE) jacket was used to create a form in which hydraulic cement was injected to restore the shape of the piling.
- The piling was encapsulated with four layers of Syntho-Glass[®]24 to provide structural integrity and mechanical protection.
- The application was completed by positioning and nailing a PE jacket to provide UV protection as well as a bumper to protect boats from scratches.

CLOCK AR

14" OD Wooden Power Pole Rehabilitation, USA

- Soil-to-air interface rotting occurring in 14"OD wooden power poles in a Louisiana chemical plant.
- Unexpected power loss due to a pole failure could result significant financial loss for the facility.
- NRI recommended Syntho-Glass 24 and a UV protective coating at the soil line
- Eight layers where applied to five poles requiring integrity restoration.
- Four layers were applied to five poles requiring preventative maintenance.

Wood Piling Submersion Project

Based on AWPA E5-15

- Used to determine efficacy of "treatment" against naturally occurring wooddestroying agents
- Exposure to be at a minimum of two locations with different degrees of marine bore attack
- Total of 8 treated and untreated pilings submerged
 - Intracoastal waterway
 - 4 pilings 2 treated, 2 untreated
 - Salt-water canal waterway
 - 4 pilings 2 treated, 2 untreated

Rating Description 10 No attack

9

7

4

- 9.5 Suspicion of attack
 - Slight attack, up to 3% of any cross-sectional area affected
- 8 Moderate attack, 3-10% of any cross-sectional area affected
 - Moderate/severe attack, 10-30% of any cross-sectional area affected
- 6 Severe attack, 30-50% of any cross-sectional area affected
 - Very severe attack, 50-75% of any cross-sectional area affected
- 0 Failure

1 month after submersion

Intracoastal Waterway

Untreated

CLOCK SPRING

Treated

Saltwater-Canal Waterway

Untreated

Treated

39

2 Year After Submersion – Canal Water

2 Year After Submersion – Canal Water

2 Year After Submersion – Intercoastal

2 Year After Submersion – Intracoastal

ENGINEERING & REPAIR PROCESS

CLOCK SPRING

Engineering & Repair Process

CONTROLLED PROCESS: NRI

Technical Feasibility Review

 Does the proposed scenario fall within the scope of an Engineered Composite Repair (ECR) system's capabilities?

Calculations Performed

- ECR material selection, repair thickness, and length calculated based on ASME and/or ISO standards.
- A report is provided detailing the prod

Customized Design Specification Delivered

• A report is provided detailing the product, repair calculations, installation specifications, Critical Hold and QC documentation.

CONTROLLED PROCESS: Contractor

Installation

- Responsible for supplying NRI qualified, trained craftsman
- Following repair procedure, surface preparation requirements and critical holds

Quality Control

• All pre & post job inspections are complete, documented and submitted to the asset owner by the qualified, lead craftsman

Assessment Form For Structural Strengthening

- Checklist to be able to perform design calculations
 - Contact information of the engineer of record (i.e. client's engineer)
 - Construction drawings (Ex. as-built drawings, structure layout, internal rebar layout, deck support structure, etc)
 - Loading requirements and/or structural deficiency analysis of structure
 - NDT inspection documentation/inspection reports
 - Highlighted area requiring repair
 - Exposure conditions of the structure
 - Accessibility
 - Purpose of the repair

NRI

Training and On-site Support

What we do...

- Ensure project integrity by providing practical training that qualifies composite installers and inspectors
- Qualify installers to meet the exact skill requirements required for the project
- Provide composite inspection and design courses for contractors and engineers
- Provide onsite support for quality assurance for any size project

NEXT STEPS

Do you have a project that you would like to walk through the AF process? Do you know another department who could use some help?

