NAVIGATION RD&T UPDATE

W. Jeff Lillycrop
Technical Director

- Navigation RD&T Needs & Priorities
- Dredging Optimization
- Quantifying Ship Movement
- Dredged Material Placement
- Data Access and Applications

Harbors & Navigation Committee, AAPA
28 Sep 2018
Navigation RD&T Strategic Needs & Priorities

- **Extend the useful life** of existing navigation infrastructure
- Improve Navigation operations and **Multimodal Freight Flow** through systems optimization
- Design & manage **resilient, sustainable navigation systems**
- Develop and deploy **eNavigation capabilities**
Dredging Portfolio Optimization Strategies

1. Dredging Project Selection
 • Dredge more NAV projects by better aligning funding to actual dredging needs
 • Recommends optimal maintained depth targets and requisite dredging quantities
 • How? Compares cargo drafts to maintained depths and considers cargo shared across projects

2. Dredge Schedule Optimization
 • Minimize mobilization costs
 → dredge more NAV projects each year for same amount of funding
 • Better align schedules with env. work windows and dredge plant capabilities
 • Can be used in whole or in part (regions, big dredges vs. little dredges, big projects vs. little projects, etc.)
Channel Depths vs. Vessel Drafts

- Historic emphasis on Total Project Tonnage as a metric for dredging work packages has obscured that fact that the deepest maintained depths, i.e. those incurring the majority of O&M dredging costs, in many cases do not handle large percentages of total channel throughput.

- Data sets and optimization formulations already exist to dramatically improve the portfolio-level cost-effectiveness of O&M dredging:
 - Waterborne Commerce data → dock-to-dock movements of vessels and cargo with draft included
 - E-Hydro → enterprise capability with high-resolution, three-dimensional digital representations of channel conditions
 - CSAT → near-term shoal forecasting to allow for consideration of maintenance dredging deferrals

PI: Ned Mitchell, Ph.D.
Systems-based Portfolio Optimization

Still must account for the interconnectivity of navigation projects, owing to their shared cargo.
Dredge Scheduling Optimization

- Schedules are not coordinated formally
- Inefficiencies due to “wasted travel” between projects
- Contributes to low # of bids on some projects

- Minimize mobilization costs \(\rightarrow \) dredge more projects for same amount of funding and in less time
- Better align schedules with env. work windows and dredge plant capabilities

Now

Optimized

- Successfully used on West Coast since 2014
 - NWD, SPD, and POD
- RSM Pilot in SAD 2016
 - All 5 districts
- Used to support USACE Hopper Fleet Recapitalization Report, 2017

PI: Ned Mitchell, Ph.D.
Collision risk assessment based on ship domain

- Dynamic ship domain aligned with course (A).
 - Major axis = 4 × Length
 - Minor axis = 3 × Swept path
- Ship domain violations (SDVs) (B).
 - The perimeter of one vessel penetrates the domain of another.
- SDV severity is based on distance between vessel perimeters (C).

(B): Ship domain violations: In panels (a) and (b), vessel j’s perimeter penetrates the domain of vessel i, resulting in an SDV. Overlapping ship domains, as in (c) do not constitute an SDV.
An objective, quantitative and broadly applicable approach to screening risks

- Consistent, cost-effective implementation across coastal ports.
- Implemented in five navigation projects, ranked by collision risk.
- A vessel in Calcasieu Ship Channel is 4.26 times more likely to be involved in an SDV than in Columbia River, OR.

<table>
<thead>
<tr>
<th>Navigation Project</th>
<th>Passenger (60-69)</th>
<th>Cargo (70-79)</th>
<th>Tanker (80-89)</th>
<th>All vessels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcasieu, LA</td>
<td>4.15E-04</td>
<td>1.41E-03</td>
<td>1.80E-03</td>
<td>1.10E-03</td>
</tr>
<tr>
<td>Boston, MA</td>
<td>6.06E-04</td>
<td>4.52E-03</td>
<td>2.25E-03</td>
<td>9.32E-04</td>
</tr>
<tr>
<td>Jacksonville, FL</td>
<td>2.01E-04</td>
<td>8.98E-04</td>
<td>6.15E-04</td>
<td>8.34E-04</td>
</tr>
<tr>
<td>Charleston, SC</td>
<td>1.02E-04</td>
<td>4.38E-04</td>
<td>5.22E-04</td>
<td>2.84E-04</td>
</tr>
<tr>
<td>Columbia River</td>
<td>1.07E-04</td>
<td>2.17E-04</td>
<td>9.11E-05</td>
<td>2.58E-04</td>
</tr>
</tbody>
</table>

PI: Martin T. Schultz, Ph.D.
FUNWAVE

FUNWAVE is a shallow water phase-resolving Boussinesq-type numerical wave model that is capable of resolving many nearshore processes such as:

✓ nearshore wave propagation & transformation
✓ refraction, **diffraction** & nonlinear shoaling
✓ wave breaking with **runup** & **overtopping**
✓ bottom friction & wave-induced current
✓ nonlinear wave-wave & wave-current interactions
✓ **partially absorbing/reflecting** inner boundaries
✓ **harbor resonance** and **infragravity (IG) waves**
✓ **vessel-generated waves** & related sediment transport
✓ adaptive mesh refinement (AMR) module – telescoping grids

Example Applications:
- Harbor Resonance studies for St. George, St. Paul (Alaska)
- Infragravity (IG) Waves on reefs (Hawaii)
- Breakwater Design for limiting runup and overtopping/inundation (Baltimore District)
- Vessel-generated waves and related sediment transport with morphology change (Houston Ship Channel)
Navigation Resilience

- Evaluated Ports of Jacksonville, Savannah, and Charleston in response to Hurricane Matthew.

- Bayesian Changepoint Analysis (BCE) to detect significant changes in system performance via AIS-derived proxy metrics → Repeatable framework for evaluating future disruptive events.
Thin Layer Placement

Quantification of DM Layer Thickness over Time as Applied in TLP Wetland Nourishment Projects (16-07)
Susan Bailey & Zachary Tyler

Guidance for Thin Layer Placement of Fine and Coarse Grained Sediment (17-03)
Welp/Piercy

- **Problem**
 - TLP is experiencing renaissance due to degrading wetlands, SLR, limited dredged material placement alternatives, etc., but there is a dearth of engineering guidance available to the increasing numbers of people want to do it.

- **Objective**
 - Distill knowledge & information from past, current, and developing TLP projects, and evolving pertinent R&D activities
 - Synthesize into guidance documents designed for use by both USACE and stakeholders to optimize design and construction of TLP projects.

- **Approach**
 - Conduct lit search to identify existing TLP documentation regarding state-of-practice environmental, ecological, economic, and operational aspects.
 - Compile TLP-related R&D activities
 - Synthesize pertinent aspects into a state-of-the-practice guidance document.

Sed Accretion in TLP marshes (17-01)
Boyd & Gailani

- **Approach**
 - Collect marsh sediment cores in restored and unrestored marshes and determine accretion rates
 - Compare and contrast the accretionary dynamic in restored and unrestored marshes
Engineering With Nature Using Vegetation
Tosin Sekoni

- Problem
 - Limited guidance on the use of native plant species in DMPAs and USACE projects.
 - Minimal application of native plant communities in USACE projects.

- Objective
 - Provide guidance on plant community and ecosystem development.
 - Demonstrate the use of vegetation and natural features to support engineering objectives.
 - Provide EWN information to USACE engineers with emphasis on vegetation.

- Approach
 - Workshops
 - Demonstration Projects
 - Technical Publications
Developing Guidance for Incorporating Natural and Nature-based features into Engineering Design

Piercy/Swannack

- **Problem**
 - Increased interest in natural approaches to managing flood risk in conjunction with structural and nonstructural approaches
 - Limited quantified data on use and efficacy
 - No dedicated engineering guidelines on how to design and implement NNBF

- **Objective**
 - Compile existing NNBF projects within USACE and other agencies
 - Synthesize information on types, success, construction, lessons learned into guidance document (in conjunction with partners)
 - Develop engineering guidance for NNBF incorporation

- **Approach**
 - Assemble world-experts on use of natural flood risk features
 - Develop framework for NNBF use and identify key coastal and fluvial features to consider
 - Assemble state-of-practice guidelines on use of NNBF
Dredging and Dredged Material Management Decision Support Tool
Safra Altman, Linda Lillycrop

- **Problem**
 - Need for modern, user friendly evaluation tools which access Corps enterprise databases to improve DMM decision making for Corps Districts, Researchers, non-Corps.

- **Objective**
 - Improve and update CE-Dredge DST Viewer to operationalize and expand capabilities and nationalize.
 - Add public facing viewer in collaboration with Natural Infrastructure Initiative (NIO Tool)
 - Collaborate w/R&D&T Programs & Districts

- **Approach**
 - Coordinate with Districts, RD&T programs, non-Corps agencies
 - Utilize/Populate Corps eDatabases
 - Develop web-viewers (Corps and Public) which integrate data and RD&T tool results
Selected ERDC Navigation Technical Director

Charles (Eddie) Wiggins
Charles.E.Wiggins@usace.army.mil