

Predictive Modeling and Design Solutions for Beneficial Use of Dredged Material V ANCHOR QEA

Presented by Wendell Mears April 18, 2018

Integrated Approach is Key to Success

Beneficial Use (BU) Opportunities

Beneficial Use Opportunities

Remediation Caps

Confined Placement Facility (CPF)– Shoreline Development

Beneficial Use Opportunities (cont.)

Predictive Modeling for BU Projects

Physical Stability of Placed Sediment

- Objective: Evaluate shortand long-term physical stability of placed material due to hydrodynamic forcing
- Tools: ADCIRC, STWAVE, Delft-3d, SWAN, M2D and others
- Data needs
 - Site conditions
 - Design conditions

- Sediment characteristiesedicted Current Field Around BU Island (M2D Model

Physical Stability of Placed Sediment

- Tidal currents
- Wind-waves
- Vessel wakes
- Propeller wash
- Riverine currents
- Outfalls/stormdrains
- Storms/hurricanes

Simulation of Hurricane Katrina for Port of Gulfport (wind stres

Keyport Lagoon, U.S. Navy Tidal Currents (ADCIRC) and Excess Shear Stress

Hancock County Living Shorelines, Mississippi Sound Wave Energy Along Shoreline (Delft 3D Wave)

Sustainability (SLR)

- Objective: Evaluate impacts to project over design life based on predictions of sea level rise
- Tools: Hydrodynamic models and GIS spatial modeling tools
- Data needs
 - Site conditions
 - Design conditions
 - Habitat conditions and characteristics
 - Sea level rise estimates (typically through 2100)

Transformation of Tidal Wetlands in DE

Contaminant Mobility (Benthic)

- Mobility of contaminants through the placed sediments
- Groundwater pathways
- Reible Model (1998 EPA Cap Guidance document)

Contaminant Mobility (Suspended)

- Objective: Assess water quality impacts resulting from dredging
 - Turbidity
 - Dissolved contaminants
- Tools: ADDAMS, DREDGE and STFATE modules; EPA Plumes
- Data needs
 - Site conditions
 - Sediment characteristics
 - Dredge characteristics and operations
 - Placement operations

Geotechnical Modeling

 Dredged material bulking and settlement (short-term)

- Foundation consolidation (long-term)
- PSDDF Model
 - Settlement during construction
 - Long-term consolidation

Summary of Predictive Modeling for BU

Beneficial Use Options	Physical Stability	Sustain- ability	Contaminan t Mobility (Benthic)	Contaminant Mobility (suspended)	Geotechnical Considerations
Confined Placement Facility/ Shoreline Development	+++	+	+++	+++	+++
Confined Aquatic Placement	+++	++	+++	+++	+++
Beach Nourishment	+ + +	+			+
Habitat Restoration/Mitigation	+++	+++			+++
Sediment Remediation Cap	+++		+++	+++	+++

+ Considered

++ Important

+++ Critical for Design

Confined Placement Facilities

CPF Design Considerations

- Containment design
 - Static and seismic stability
 - Contaminant mobility
- Size and capacity
 - Short-term bulking and settlement
 - Long-term consolidation
 - Ponding area to meet water quality criteria

- Pumping distance
 - Water content
- Site final use
 - Habitat
 - Shoreline development
 - Recreation

Confined Aquatic Placement

CAP Design Considerations

- Submerged or emergent
- Containment design
 - Static and seismic stability
 - Erosion protection
 - Contaminant mobility
- Size and capacity
 - Short-term bulking and settlement
 - Long-term consolidation

- Sustainability
- Pumping distance
 - Water content
- Site final use
 - Typically habitat function
 - Navigation and anchoring restrictions

Port Hueneme Beneficial Use

Port Hueneme CAP Cross-Section

Note: MLLW = mean lower low water

Port Hueneme – Barge Placement

Port Hueneme, USACE, U.S. Navy

Beach Nourishment and Habitat Restoration

Other Beneficial Uses

- Beach nourishment
- Agriculture and products
 - Topsoil
 - Aquaculture
- Berms
 - Stable and feeder

- Habitat restoration
- Land improvement
- Marsh and intertidal habitat

Deer Island Marsh Creation

- Design elements
 - 7- to 8-foot-high dike
 - Easterly wing dike
 - Flash board riser weirs
 - Offset to provide bayou
- Dredged material from Biloxi Lateral Channel
- Approximately 40 acres were filled with 365,000 cy of sediment

Enhancing Existing Marsh

Illustration of conceptual model for marsh recovery after thin-layer placement

Questions?

