Ocean Vessel Response to Air Quality and Green House Gases

AAPA Harbors, Navigation & Environment Seminar

May 21, 2008

T.L. Garrett
Vice President
Pacific Merchant
Shipping Association

Alliance of the Ports of Canada, the Caribbean, Latin America and the United States

The Air is Getting Cleaner!

2007 Cleanest Yet!

Long-Term Emissions Trends in the US

Diesel PM from Goods Movement

Throughput vs Emissions

Throughput up 44%

2001 vs. 2005

Vessel Emissions

Container Ship Evolution

TEU Capacity

Ship Emissions are a World Wide Issue

IMO MARPOL 73/78, Annex VI

Entered into Force May 19, 2005*

- Establish Ship Engine NOx Standard
- Sets a Cap on Fuel Sulfur Content
- Limits Ozone Depleting Chemicals
- Provides for Sulfur Emission Control Areas (SECAs)

*Limited in Scope, still not adopted by the U.S.A. Needs to be more stringent and comprehensive

Amendments to Annex VI

NOx Engine Standards

- Tier 1 17.0 g-NOx/kW-hr, vessels 1990 2010
- Tier 2 14.4 g-NOx/kW-hr January 1, 2011
- Tier 3 3.4 g-NOx/kW-hr January 1, 2016
 In ECA, Tier 2 outside ECA

Global Sulfur Cap

- 4.5% reduced to 3.5% in 2012
- 0.5% as early as 2020 but no later than 2025*
 * fuel availability study 2018.

SECAs to ECAs

- 1.5% sulfur reduced to 1.0% on March 1, 2010
- 0.1% on January 1, 2015

CARB Auxiliary Engine Fuel Regulation

Switch to distillate fuels 24 nm offshore

- 2007
 - Marine Gas Oil
 - Marine Diesel Oil < 0.5% Sulfur
 - Alternative Compliance Plans*
- 2010
 - Distillate fuel < 0.1% Sulfur
 - Fuel availability review?

PMSA Litigation Stops CARB Enforcement

* New Version - Fuel Only, Avoids Waiver

CARB Main & Boiler Engine Reg.

Switch to distillate fuels 24 nm offshore

- July 1, 2009
 - 1.5% S Marine Gas Oil (MGO)
 - 0.5% S Marine Diesel Oil (MDO)
 - Alternative Compliance Plans
- January 1, 2012
 - Distillate fuel between 0.1% & 0.2% Sulfur
 - Fuel availability review?

Workshop - May 13, 2008 Approval - July 25, 2008?

Ports' Clean Fuel Incentive Program

- 100% of Cost between Residual Fuel and 0.2% Sulfur MGO (LA Index)
- 1yr. July '08 July '09 (CARB Reg.)
- Ship Registration Required (May '08)
- Requires VSR and LSF in Auxiliaries
- \$9.9 Million POLB, \$8.6 million POLA

Low Sulfur Marine Fuels

- CostAvailability
- GHG Penalty

IMO Green House Gas Considerations (MEPC 58)

Short Term

- Global Levy Scheme
- Improvement of Fuel Consumption
- Energy Efficiency Design and Management Plan
- Onshore Power
- Wind Power
- Voluntary/Mandatory CO₂ reporting, information exchange, performance ratings
- Strict limitation on refrigerant gas leakage
- Vessel Speed Reductions
- Improved Traffic Control, Fleet Management, Cargo Handling Operations

IMO Green House Gas Considerations (MEPC 58)

Longer Term

- Technical Measures for Ship Design
- Use of Alternative Fuels
- CO₂ Design Index for New Ships
- Verification Scheme for CO₂ Operational Index
- Non-compliance penalty mechnism
- Emission Trading Scheme
- Mandatory CO₂ Index for Port Infrastructure
- Other Measures Developed by the GHG Working Group (Oslo June 2008)

AB32 California Global Warming Solutions Act

Goal 1990 levels by 2020 est. 173 MMT CO₂

Goods Movement = 3%

AB32 Vessel Measures

- Shore Power (0.24 MMT CO₂)
- Vessels Speed Reduction (1.4 MMT CO₂)
- Vessel Operation Best Practices (1.6 MMT CO₂)
 - Engine Maintenance
 - Optimized Propeller/Hull Designs
 - Advance Hull Coatings & Maintenance
 - Air Cavity System
 - Sails
 - Advanced Heat Recovery
 - Alternative/Renewable Fuels
 - Route Planning/Vessel Speed Reductions

Ship Emission Control

- IMO & U.S. Engine Stds.
- Vessel Speed Reduction
- Cleaner Fuels
- Engine Technology
- Retrofits

COLD IRONING

CARB Regulation, Dec '07

- Ship Types, Grid (2014) & Non-Grid (2010) options
- Percent Calls & Emission Goals (80% 2020)

Voluntary Vessel Speed Reduction Program/Reg?

Initiated May 2001
Green Flag Program
+ 90% compliance

MAN Diesel Engine Technology (NOx)

Electronic Controls -30%
Slide Valves -30%
Water Emulsification -30%
Scavenge Air Moistening -50%
Selective Catalytic Red. -98%

Sea water is pumped to the scrubber CaCO3 absorbs the SOx from the exhaust Produces CaSO4 in discharge

Water In Fuel Emulsification

- Water content of 10-20% tested
- NOx reduction = water content
 20% water = 20% less NOx
- PM reduction is 2-3 times % of water 20% water = 60% less PM

Wittmar Non-Grid Cold Ironing

CALIFORNIA REPUBLIC

- Depending on the Length of Stay and Hotelling kW load, the Air Pollution Reduced by using Wittmar DFMV™
- NOx is Reduced 98%
- CO is Reduced 57%
- PM10 is Reduced 99%
- SOx is Reduced 100%
- CO2 is Reduced 57%

Advanced Maritime Emssions Control System (AMECS)

Fuel Saving Strategies

Concept Vessel of the Future

- SolarWindWaveFuel Cells
- CONTROLIMACHINERY

 CARGO AREA

 WAYE ENERGY
 CONVERTERS
 FINE PROPULSION
 GENERATORS

 FINE
 FINE
 FINE

