Resilience in America's Ports - Issues - Big Data - How to Create Port Resilience - Innovation in Port Resilience Mir #### Issues - Security Operational Efficiency Tradeoff → Balance - Security Resilience → what is the tradeoff/relationship? - Do we all understand port resilience? - $\,-\,$ Many independent economic entities with different goals - Planning for Port Resilience - Do we really know how to create Port Resilience? - Do we all have the same target for resilience outcomes? - Big Data means big opportunities, big challenges # Big Data: Big Opportunities, Big Challenges Mir # Double-edged Sword of BIG DATA - Great potential, great obstacles - Today: many new sources, minute detail, high volume, real-time, potential to leverage RT data for a common operational picture - But: data is static, not readily available, not integrated, not validated, not easily processed into →Information→Knowledge | Situation | Data | Information | Knowledge | |--------------------------|---|---|--| | Port closure | Risk impacts if cargo does not reach destination | Economic risk to region | Priority for 1 st cargo permitted,
Trade Resumption
plan | | Port closure | Alternate port capacities, expected delays | Validated options for cargo allocation | Priority for alternate port selection | | Oil spill in
waterway | Port conditions,
currents, wind
direction and
speed | Anticipated migration and movement of spill | Optimal allocation of spill clean up resources and locales | | Hurricane
forecasted | Storm
performance, wind
strength, waterway
structure | Prediction of storm surge | Port locations at
most risk, requiring
personnel and
asset movement | ### Double-edged Sword of BIG DATA • Great potential, great obstacles - Today: many new sources, minute detail, high volume, real-time, potential to leverage RT data for a common operational picture - But: data is static, not readily available, not integrated, not validated, not easily processed into →Information→Knowledge Wisdom – constrained by limited **Decision Quality** input Imperfect Knowledge, No Common Operational Picture Non-integrated Information Limited Data Time Disruption Decision Point Mil ### Supply Chain → Port Resilience - Supply Chain Resilience: - In material science, resilience is the physical property of a material that can return to its original shape or position after a deformation that does not exceed its elastic limit. - In today's business environment, resilience is widely used to characterize an organization's ability to react to an unexpected disruption, such as one caused by a terrorist attack or natural disaster, and restore normal operations. - It's the ability to recreate supply chain capabilities, to 'bounce back' from variations and disruptions - Examples of port resilience? Source: "Building a Secure and Resilient Supply Network" by J. Rice, F. Caniato, SCMR Sept-Oct 2003 Mir ### Creating Port Resilience Ctt - Vulnerability and Response Assessment - Identify risk sources, response capabilities/capacities # Creating Port Resilience - Vulnerability and Response Assessment - Identify risk sources, response capabilities/capacities # How capable are domestic US ports? 24 # Assessing Response Capabilities: Capacity Assessment Absorbing Volume Post-Disruption | Commodity/Conveyance Top 3 Ports for the commodity | Min Capacity Needed to Absorb
Volume of Top Port | |---|---| | Container Top 3 Ports: Los Angeles, Long Beach, NY/NJ | 26% | | Chemicals Top 3 Ports: Houston, South Louisiana, Baton Rouge | 23% | | Coal Top 3 Ports: Mobile, Pittsburgh, Hampton Roads | 16% | | Food and Farm Products Top 3 Ports: So. Louisiana, New Orleans, Plaquemines | 50% | | Manufactured Equipment Top 3 Ports: Los Angeles, NY/NJ, Hampton Roads | 18% | | Petroleum
Top 3 Ports: Houston, NY/NJ, South Louisiana | 16% | | Raw Materials Top 3 Ports: Duluth-Superior, NY/NJ, So. Louisiana | 5% | 25 Piir ### Creating Port Resilience - Vulnerability and Response Assessment - Identify risk sources, response capabilities/capacities - Ongoing Monitoring - To assess required response - ERMA available now but scope is limited ### • All-hazards Continuity Plans - Backup for critical infrastructure and systems (Port infrastructure, Intermodal, Waterways, Terminals) - For each failure mode/predictable outcome - Response plans, how will cargo in/out be processed? - Restarting operations/trade resumption - Do you have the governance to respond? Jones Act/Sandy 26 ### Supply Chain Failure Modes – Predictable Outcomes All disruptions result in a loss of one or more of these capacities: - Capacity to acquire materials (supply) - Capacity to ship/transport - Capacity to communicate - Capacity to convert (internal operations) - Human resources (personnel) - Financial flows 27 | Response O | ptions by Fai | lure Mode | | |-------------------------------|--|---|---| | Failure Mode | Resilience Action | Advantages | Disadvantages | | Loss of supply /
materials | Use multiple sources, multiple locations | Spread risk across firms, locations | Higher cost to qualify suppliers, lower volume leverage | | | Use single source | Known supplier | Vulnerable to disruption w/o multi-site back ups | | | Modify product to use standard parts | Reduces part
invty cost,
complexity | Costly to modify existing materials standards | | COC | | 29 | PHT | | Port | Failure mode:
Loss of | Elements that may be backed up | |--------------------------------------|---|--| | Supply | Port supplies, utilities and infrastructure | Electricity, wastewater,
water, roads, rail, land area,
inventory, tugs, pilot boats | | Transportation | The ability to move
goods and people
within and through the
port | Transportation providers,
trucks, lifts, stackers, gantry
cranes, chassis | | Communication | Communication,
coordination and
information systems
across port players | Phone lines, mobile phone,
data systems and networks,
internet access | | Internal
operations /
Capacity | The ability to move
and position vessels,
maintain safety and
security, invest,
develop and market
port. | Berth spaces and lengths,
support vehicles and vessels,
business strategies | | Human resources | Personnel operating | Port authority, pilots,
managers, security,
technicians | Mil | mm 1.1 c | T-1 1 | | COLOR TO SERVICE | 1 1 | er i e | • | |----------|---------|----------|------------------|---------|-----------|------| | Table 5: | Elabora | ation of | f failure | modes i | tor termi | nals | | Terminal | Failure mode:
Loss of | Elements that may be backed up | |--------------------------------------|---|--| | Supply | Terminal supplies,
utilities and
superstructure | Electricity, wastewater,
water, land area, inventory,
spare parts | | Transportation | The ability to move
goods and people
within the terminal | Transportation providers,
trucks, vans, lifts, stackers,
gantry cranes, chassis, | | Communication | Communication,
coordination and
information systems
within terminal and to
port | Phone lines, mobile phone,
data systems and networks,
internet access | | Internal
operations /
Capacity | Loading / unloading,
processing,
documentation,
Capacity | Storage space, cranes,
conveyors, stackers,
inventory | | Human resources | Personnel operating terminal | Longshoremen, stevedores,
drivers, managers, security,
technicians | | | | T1 | | |--------------------------------------|---|--|--| | Intermodal
connections | Failure mode: loss of | Elements that may be
backed up | | | Supply | Infrastructure leading
to public infrastructure
system, supplies for
transportation and
maintenance | Roads, rails, bridges
channels, fuel, parts,
chassis | | | Transportation | Equipment for moving
and transloading goods
for surface
transportation | Trucks, lifts | | | Communication | Oversight and the ability to document and coordinate cargo shipment, communication between parties – stevedores, truckers, terminal operators | Routing systems,
communication with
providers, IT systems, | | | Internal
operations /
Capacity | The ability to transload
goods between surface
transportation and
vessels, including
processing and storage. | Inventory, spare
chassis, storage and
transloading space | | | Human resources | Personnel responsible
for managing and
performing
transloading operations | Drivers, management, planners | | ### Innovation in Port Resilience - Port Mapper (CSR, MIT) - Cargo capacity, alternate port visualization and ID tool - Magello (CSR, Stevens Institute of Technology) - Emergency response and management visualization tool - Other.... # Port Mapper ### Port Disruption Response – Cargo Allocation - What are the options for cargo allocation in the event of a disruption? - Need capacity - Proximity to disrupted port - Match cargo type containers go to container terminals, dry bulk goes to dry bulk terminals, etc. - While there are ~361 ports in the US - Not every port is an option - Concentration of commodity types reveals vulnerability - Which port handles which cargo? - To date, we can only answer using intuition but not data - So we developed a tool to identify cargo allocation options ### Cargo Allocation/Capacity Model - Used 5 Years of annual port data (Army Corps of Engineers) - Segmented by commodity (SIC), port and cargo flow direction - Augmented with port location information, water- and landbased distances between ports - Created Excel-based model to understand port capacity in greater detail MASSACHUSETTS INSTITUTE OF TECHNOLOGY ||||||₃₀ ## Capabilities of Model/Tool ### Cargo Allocation/Capacity Model Capability: The user can.... Fail single port and identify alternate port options for cargo Fail multiple ports and identify alternate port options for cargo But you need an analyst to use it... so we made a visual app called ### **Port Mapper** rail port and anocate different amounts of cargo to different ports Calculate port capacity requirements | Baltimore – SIC Coal & I | O | ' | | | | | |--|--------------------|------------|------------|------------|------|--| | Port Name | Commodity
Group | 2009 | 2008 | 2007 | Land | | | BALTIMORE, MD | Coal | 14,244,900 | 16,407,300 | 11,401,400 | 0 | | | WILMINGTON, DE | Coal | 45 | 32,450 | 214 | 66 | | | PHILADELPHIA, PA | Coal | 116,831 | 30,639 | 432 | 90 | | | CAMDEN-GLOUCESTER, NJ | Coal | 254 | 43,040 | 0 | 93 | | | RICHMOND, VA | Coal | 0 | 0 | 1 | 134 | | | NEWPORT NEWS, VA | Coal | 13,618,400 | 21,809,300 | 17,501,000 | 158 | | | HAMPTON ROADS, VA | Coal | 27,751,500 | 41,032,900 | 34,799,900 | 162 | | | NORFOLK HARBOR, VA | Coal | 14,179,500 | 19,371,800 | 17,651,600 | 164 | | | SUMMARY OF TRAFFIC TOTAL
WATERBORNE COMMERCE OF THE PORT OF
NEW YORK | Coal | 2,468,760 | 2,267,670 | 1,981,820 | 174 | | | PITTSBURGH, PA | Coal | 27,779,300 | 31,350,000 | 24,769,700 | 196 | | | BRIDGEPORT, CT | Coal | 5,104,860 | 3,989,940 | 2,870,760 | 224 | | | NEW HAVEN, CT | Coal | 0 | 26,400 | 10,800 | 242 | | | ERIE, PA | Coal | 27,397 | 18,321 | 0 | 269 | | | BUFFALO, NY | Coal | 487,183 | 516,511 | 270,751 | 276 | | | CONNEAUT, OH | Coal | 1,163,040 | 646,300 | 8,475 | 278 | | | NEW LONDON, CT | Coal | 663,562 | 854,351 | 655,176 | 278 | | | ASHTABULA, OH | Coal | 2,793,640 | 2,485,040 | 1,768,970 | 283 | | | FAIRPORT HARBOR, OH | Coal | 13,688 | 16,681 | 0 | 295 | | | Port Name | Commodity | Group 2009 | 2008 | 2007 | Land | | |---------------------------|-------------|------------|---------|---------|-------|--| | STOCKTON, CA | Chemicals | 331,842 | 250,697 | 182,153 | 0 | | | SACRAMENTO, CA | Chemicals | 17,634 | 16,834 | 12,122 | 44 | | | OAKLAND, CA | Chemicals | 808 | 36,645 | 12,237 | 55 | | | PORT HUENEME, CA | Chemicals | 0 | 3,108 | 0 | 288 | | | LOS ANGELES, CA | Chemicals | 1,400 | 1,872 | 1,448 | 338 | | | LONG BEACH, CA | Chemicals | 1,144 | 1,694 | 418 | 339 | | | PORTLAND, OR | Chemicals | 96,593 | 106,487 | 78,686 | 529 | | | TACOMA, WA | Chemicals | 1,403 | 1,528 | 827 | 646 | | | SEATTLE, WA | Chemicals | 207 | 131 | 62 | 669 | | | TULSA, PORT OF CATOOSA, C | K Chemicals | 60,000 | 55,000 | 60,000 | 1,414 | | | VICTORIA, TX | Chemicals | 0 | 2,450 | 0 | 1,535 | | | TEXAS CITY, TX | Chemicals | 30,234 | 0 | 10,066 | 1,590 | | | HOUSTON, TX | Chemicals | 314,328 | 316,188 | 291,475 | 1,609 | | | FREEPORT, TX | Chemicals | 546,220 | 397,606 | 383,297 | 1,616 | | | GALVESTON, TX | Chemicals | 17,450 | 7,143 | 0 | 1,628 | | | BEAUMONT, TX | Chemicals | 724,338 | 648,661 | 209,885 | 1,645 | | | PORT ARTHUR, TX | Chemicals | 18,443 | 29,754 | 93,258 | 1,660 | | ### Possible Future Developments - Integrate with freight flows to hinterland, intermodal - Integrate into a single environment for COP - Scenario development: disruption changes land and port conveyances Magello (CSR, Stevens Institute of Technology; Project Lead Investigator & Director of CSR, Dr. Julie Pullen) 22 # Innovation in Port Resilience – Magello (CSR Stevens) - Magello - Allows end user to visualize ultra-high-resolution port environment data on a Google Earth™ platform - Ongoing monitoring, situation assessment - Emergency response and management tool - Data Capabilities - Urban: terrain, roads, AIS, ports - Ocean: surface temp, currents (direction, velocity, HF radar), acoustics, salinity - Air: temp, wind (velocity, vector), rain, air quality - Hazard: earthquake, contaminant release, explosion, oil spill - Coast: shoreline sensitivity, hydro lines, land use, AOR 52 Magello Objective: Combine data in single tool to aid emergency response ## Magello - Intuitive interface - Real-time data, crowd-source info - Platform change to enable mobile device access - a limbara affacta manife; access lavial • Ultra-high-resolution models • Urban effects, multi-access levels Designed with broad range of apps to compliment, augment industry/gov't platforms (ERMA, SAROPS) 54 Magello Overview – AIS, Buildings, Surface Temps, Currents, Terrain, Roads, Winds # And More.... CCICADA, CREATE, ADCIRC, VACCINE, Future Mil ### Future/Other Innovations in Port Resilience - Other DHS COE contributors - CCICADA: Command, Control and Interoperability Center for Data Analysis (Rutgers) - CREATE: National Center for Risk and Economic Analysis of Terrorism Events (USC) - cgSARVA (VACCINE, Purdue) - Search-and-rescue prediction visualization tool - ADCIRC (Coastal Hazard Center, UNC-CH) - Storm surge modeling, dredging feasibility, modeling tides - Future - Integrating/fusing all of these analytical tools into one system to provide a Common Operational Picture # Thank you Jim Rice jrice@mit.edu 617.258.8584 http://ctl.mit.edu http://ctl.mit.edu/research/port-resilience http://portmap.mit.edu/port_mapper_g01.php lii.