Crane Loads & Wharf Structure Design: Putting the Two Together

AAPA Facilities Engineering Seminar
January 2006 – Jacksonville, Florida

Arun Bhimani, S.E.
President
Liftech Consultants Inc.

Erik Soderberg, S.E.
Principal
Liftech Consultants Inc.
www.liftech.net
Crane Size Growth:
1st Container Crane & Jumbo Crane
Crane Service Wheel Loads

Waterside Operating Wheel Loads

Year Manufactured

Wheel Load

Liftech
Crane Loads

Crane loads increasing
Consequences of misapplication more severe
Codes becoming more complex
Chance of engineering errors increasing
Presentation Outline

The Problem – Overview
Wharf Designer’s Perspective
Crane Designer’s Perspective
Putting the Two Together
Q&A and Feedback
The Problem – Overview

- Consultant
- Crane Purchaser
- Crane Supplier
- Port
- Wharf Designer
Crane Purchaser Difficulties

Purchaser specified

“Allowable wheel load: 200 kips/wheel”

Suppliers submit

Supplier A 180 k/wheel
Supplier B 200 k/wheel
Supplier C 220 k/wheel

Which suppliers are compliant?
Crane Supplier Difficulty

Purchaser specified

 Allowable wheel load: 200 kips/wheel
 In some cases, linear load (kips/ft)

Not defined

 Operating or out-of-service?
 Service or factored?
 Wind profile?
 Increase for storm condition?
Wharf Designer Difficulty

Client provides limited crane load data
No loading pattern
No basis given – Service or factored?
Same loads given for landside and waterside
No details of wind or seismic criteria
Wharf Designer Perspective

Codes and Design Principle
Crane Girder Design
Design for Tie-down Loads
Crane Stop Design
Seismic Design Considerations
Codes and Design Principle
Design Codes & Standards

Crane
- FEM, DIN, BS, AISC …,
- Liftech

Wharf Structures
- ACI 318 Building Code and Commentary
- ASCE 7-05 Minimum Design Loads for Buildings and Other Structures
- AISC Steel Construction Manual
Design Principle - Wharf Structure Design

Load Resistance Factored Design (LRFD)

Required Strength \(\leq \) Design Strength

Required Strength = \(\sum \) Service Loads * Load Factors

Design Strength = Material Strength * Strength Reduction Factor \(\Phi \)
Load Factors & Φ Factors

<table>
<thead>
<tr>
<th>ACI 318</th>
<th>Load Factors</th>
<th>Concrete Φ Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D</td>
<td>L</td>
</tr>
<tr>
<td>to 2001</td>
<td>1.4</td>
<td>1.7</td>
</tr>
<tr>
<td>from 2002</td>
<td>1.2</td>
<td>1.6</td>
</tr>
</tbody>
</table>

* 1.3 if directionality factor is not included
Design Principle – Soil Capacity

Allowable Stress Design

Generally use service loads

Factor of safety typically 2.0
Crane Girder Design
Required Crane Geometry Data

- Sill Beam
- Tie-downs
- Bumper
- Stowage pin
- \(n-1 \) S

- \(n = \) number of wheels per corner
- \(S = \) average wheel spacing
Typical Wheel Loading Geometry

Typical Wheel Spacing

7 at 5' 9' 7 at 5'

Recommended Wheel Design Load Geometry 40' 4' 40'
Dead Loads and Live Loads

Wharf Loads
D – Wharf structure self weight
L – Wharf live load, includes containers and yard equipment (does not control)

Crane Loads (ASCE 7-05)
D – Weight of crane excluding lifted load
L – Lifted load or rated capacity
ACI Load Factors – Crane Loading

<table>
<thead>
<tr>
<th>ACI 318</th>
<th>Load Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>D</td>
</tr>
<tr>
<td>to 2001</td>
<td>1.4</td>
</tr>
<tr>
<td>from 2002</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Some designers treat crane dead load as live load and use the 1.6 factor. This results in 23% overdesign; $1.6 / 1.3 = 1.23$.
Example Combination Table: Service Wheel Loads

<table>
<thead>
<tr>
<th>Mode</th>
<th>Operating</th>
<th>Stowed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WOP1</td>
<td>WOP2</td>
</tr>
<tr>
<td>Dead Load</td>
<td>DL</td>
<td>1.0</td>
</tr>
<tr>
<td>Trolley Load</td>
<td>TL</td>
<td>1.0</td>
</tr>
<tr>
<td>Lift System</td>
<td>LS</td>
<td>1.0</td>
</tr>
<tr>
<td>Lifted Load</td>
<td>LL</td>
<td>1.0</td>
</tr>
<tr>
<td>Impact</td>
<td>IMP</td>
<td>0.5</td>
</tr>
<tr>
<td>Gantry Lateral</td>
<td>LATG</td>
<td>1.0</td>
</tr>
<tr>
<td>Op. Wind Load</td>
<td>WLO</td>
<td>1.0</td>
</tr>
<tr>
<td>Stall Torque Load</td>
<td>STL</td>
<td>1.0</td>
</tr>
<tr>
<td>Collision Load</td>
<td>COLL</td>
<td></td>
</tr>
<tr>
<td>Storm Wind Load</td>
<td>WLS</td>
<td></td>
</tr>
<tr>
<td>Earthquake Load</td>
<td>EQ</td>
<td></td>
</tr>
<tr>
<td>Allowable Wheel Loads (tons/wheel)</td>
<td>LS</td>
<td>50 x S</td>
</tr>
<tr>
<td></td>
<td>WS</td>
<td>65 x S</td>
</tr>
</tbody>
</table>

S = Average spacing, in meters, between the wheels at each corner.

Example:

\[S = 1.5 \text{ m}, \text{ Allowable LS Operating} = 50 \text{ t/m} \times 1.5 \text{ m} = 75 \text{ t/wheel} \]
Example Combination Table: Factored Wheel Loads

<table>
<thead>
<tr>
<th>Mode</th>
<th>WOP1</th>
<th>WOP2</th>
<th>WOP3</th>
<th>WOP4</th>
<th>WS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead Load</td>
<td>1.2</td>
<td>1.2</td>
<td>1.0</td>
<td>1.0</td>
<td>1.2</td>
</tr>
<tr>
<td>Trolley Load</td>
<td>1.2</td>
<td>1.2</td>
<td>1.0</td>
<td>1.0</td>
<td>1.2</td>
</tr>
<tr>
<td>Lift System</td>
<td>1.2</td>
<td>1.2</td>
<td>1.0</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Lifted Load</td>
<td>1.6</td>
<td>1.6</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact</td>
<td></td>
<td></td>
<td></td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Gantry Lateral</td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stall Torque Load</td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collision Load</td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Storm Wind Load</td>
<td></td>
<td></td>
<td></td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>Earthquake Load</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allowable Wheel Load</td>
<td></td>
<td></td>
<td>60 x S</td>
<td>80 x S</td>
<td></td>
</tr>
<tr>
<td>Loads (tons/wheel)</td>
<td></td>
<td></td>
<td>75 x S</td>
<td>100 x S</td>
<td></td>
</tr>
</tbody>
</table>

S = Average spacing, in meters, between the wheels at each corner.

Example:

*S = 1.5 m, Allowable WS Storm = 100 t/m * 1.5 m = 150 t/wheel*
Design for Tie-down Loads
Multiple Tie-downs at a Corner

Uneven tie-down forces
Causes of Uneven Distribution

Some reasons why forces are not evenly distributed:

- Crane deflection
- Construction tolerances
- Wharf pins not centered
- Links not perfectly straight due to friction
Tie-down Loads

Manufacturers typically provide the service corner uplift force

Needed data:

- Factored corner uplift force
- Distribution between tie-downs
- Direction of force (allow for slight angle)
Crane Stop Design
Bumper Load Provided by Manufacturer

Rated Bumper Reaction

Bumpers sized for collision at maximum gantry speed

Does not address runaway crane
Recommended Crane Stop Design Load

Tipping Force

H = maximum load that can develop, i.e. the load at which the crane tips.

D = crane weight

H = approximately 0.25 x D per stop
Wharf Seismic Design – Crane Loading

The mass of typical jumbo A-frame cranes can be ignored

For certain wharves and cranes, a time-history analysis may be necessary

Large, short duration wheel loads can be ignored

Localized rail damage may occur

The crane may derail
Crane Designer Perspective

Basic Loads
Storm Wind Load
Load Combinations and Factors
Tie-down Loads
Basic Loads
Dead and **Live Loads**

Dead Loads
- DL: Crane structure weight
- TL: Trolley structure weight
- LS: Lift System Weight

Live Loads
- LL: Rated container load
Inertial Loads

IMP: Vertical impact due to hoist acceleration

LATT: Lateral due to trolley acceleration

LATG: Lateral due to gantry acceleration
Overload

COLL: Crane Collision

SNAG: Snagging headblock

STALL: Stalling hoist motors

Normally do not control
Environmental Loads

WLO: Wind load operating (In-Service)

WLS*: Wind load storm (Out-of-Service)

EQ: Earthquake load

*Often a major source of discrepancies
Wind Load, Storm
WLS: Out-of-Service Wind

Wind Force = \[\sum A \times C_f \times q_z \]

\(A \) = Area of crane element

\(C_f \) = Shape coefficient (including shielding)

\(q_z \) = Dynamic pressure, function of:

- Mean recurrence interval (MRI)
- Gust duration
- \(V_{ref}^2 \), where \(V_{ref} \) is a location-specific, code-specified reference wind speed
- Exposure (surface roughness)

Need to clearly specify

From wind tunnel testing
Shape Coefficient, C_f

Empirical values: FEM, BSI, etc.

Wind tunnel tests are more accurate

Boundary layer
Angled wind effects
Shielding effects
Angled Wind

Wind Tunnel Test

Liftech Equations

Fx

Fz

Reaction

Wind Direction, Degrees

0 45 90 135 180
WLS: Out-of-Service Wind

Wind Force = \(\sum A \times C_f \times q_z \)

- **A** = Area of element
- **\(C_f \)** = Shape coefficient (including shielding)
- **\(q_z \)** = Dynamic pressure, function of:
 - Mean recurrence interval (MRI)
 - Gust duration
 - \(V_{ref}^2 \), where \(V_{ref} \) is a location-specific, code-specified reference wind speed
 - Exposure (surface roughness)

From wind tunnel testing

Need to clearly specify
Mean Recurrence Interval

<table>
<thead>
<tr>
<th>MRI</th>
<th>1</th>
<th>10</th>
<th>25</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 yrs</td>
<td>.10</td>
<td>.64</td>
<td>.93</td>
<td>.99</td>
<td>.99997</td>
</tr>
<tr>
<td>25 yrs</td>
<td>.04</td>
<td>.34</td>
<td>.64</td>
<td>.87</td>
<td>.98</td>
</tr>
<tr>
<td>50 yrs</td>
<td>.02</td>
<td>.18</td>
<td>.40</td>
<td>.64</td>
<td>.87</td>
</tr>
<tr>
<td>100 yrs</td>
<td>.01</td>
<td>.10</td>
<td>.22</td>
<td>.39</td>
<td>.64</td>
</tr>
</tbody>
</table>

Example:
Chance of 50-yr wind being exceeded in 25 years: 40%
WLS: Out-of-Service Wind

Wind Force = \[\sum A \times C_f \times q_z \]

\(A \) = Area of crane element

\(C_f \) = Shape coefficient (including shielding)

\[q_z = \text{Dynamic pressure, function of:} \]

- Mean recurrence interval (MRI)
- Gust duration
 \[V_{ref}^2 \] where \(V_{ref} \) is a location-specific, code-specified reference wind speed
- Exposure (surface roughness)

\} \quad \text{From wind tunnel testing}

\} \quad \text{Need to clearly specify}
Gust Duration

Wind Speed

Time
Wind Speed vs. Gust Duration

Example: converting 10-min speed to 3-sec speed

\[V_3 = V_{10\text{ min}} \left(\frac{V_{\text{hourly}}}{V_{10\text{ min}}} \right) \left(\frac{V_{3\text{ sec}}}{V_{\text{hourly}}} \right) \]

\[V_3 = V_{10\text{ min}} \left(\frac{1}{1.04} \right) (1.52) \]

\[V_3 = V_{10\text{ min}} (1.46) \]

Ratio of probable maximum speed averaged over “t” seconds to hourly mean speed.
Reference, ASCE 7-05.
Code Gust Durations

Code definitions of basic wind speed

<table>
<thead>
<tr>
<th>Code</th>
<th>Gust Duration</th>
<th>MRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 1991-1-4</td>
<td>10 min</td>
<td>50 yrs</td>
</tr>
<tr>
<td>FEM 1.004</td>
<td>10 min</td>
<td>50 yrs</td>
</tr>
<tr>
<td>ASCE 7-02</td>
<td>3 sec</td>
<td>50 yrs</td>
</tr>
<tr>
<td>HK 2004</td>
<td>3 sec</td>
<td>50 yrs</td>
</tr>
</tbody>
</table>
Typical Pressure Profiles

Shape of profile depends on surrounding surface roughness.
Variation in WLS

<table>
<thead>
<tr>
<th>Variable</th>
<th>Variation</th>
<th>Effect on V</th>
<th>Effect on F *</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRI</td>
<td>25 to 50 yrs</td>
<td>7.5%</td>
<td>15.6%</td>
</tr>
<tr>
<td>Gust</td>
<td>3 sec to 10 min</td>
<td>46%</td>
<td>113%</td>
</tr>
<tr>
<td>Profile</td>
<td>Open terrain to ocean exposure</td>
<td>5-10%</td>
<td>10-20%</td>
</tr>
</tbody>
</table>

*See later slides for effect on calculated tie-down load!
Recommendations for Specifying WLS

Return Period Use 50-yr MRI
Basic wind speed
Gust duration Use local civil code
Profile
Other factors
Shape coefficients Wind tunnel tests

Do not mix and match between codes for pressure and load factors!
Corner Reactions – Angled Wind

Do not use spreadsheet!

Use frame analysis program

Frame stiffness is significant to reactions
Load Combinations
Load Combinations

Load combinations
- Operating
- Overload
- Storm wind (out-of-service)

Design approaches
- Generally Allowable Stress Design (ASD)
Operating Condition Loads

DL: Crane weight*

LL: Rated container load

IMP & LAT: Inertial loads

WLO: Wind load, in service

*Excluding Rated Load
Out-of-Service & Overload

DL: Crane weight*

WLS: Wind load storm (out-of-service)

Overload Conditions (in and out-of-service)

*Including trolley and lift system
Recommendations

Requesting crane data
 Ask for basic loads
 Combine per ACI load factors

Requesting tenders
 Provide factored load tables
 Ask to fill in tables
 Specify allowable factored loads
Tie-down Loads
Tie-Down Failures
Crane Tie-downs
Wind Load & Crane Reactions

\[F_{\text{wind}} \]

\[F_{\text{stow pin}} \]

\[F_{\text{gantry}} \]

\[F_{\text{tie-down}} \]
Error in Calculated Tie-down Force

Ratio of moments:

\[\gamma = \frac{F_{\text{wind}} h}{D \frac{B}{2}} = \frac{\text{Overturning Moment}}{\text{Righting Moment}} \]

Error in calculated tie-down force:

error in wind force,

\[\frac{F_{\text{Tiedown,Actual}}}{F_{\text{Tiedown,Calculated}}} = \frac{1}{A} \left[(1 + e)F_{\text{Wind}} h - D \frac{B}{2} \right] = \frac{(1 + e)\gamma - 1}{\gamma - 1} \]
Error in Tie-down Force

Tiedown Force Ratio (Actual/Calculated)

- 20% error in V
- 10% error in V
- 5% error in V
- No error in V

\(\gamma \), Overturning Moment / Righting Moment
Example:

Error in wind speed = 10%; \(\gamma = 1.4 \)
Error in wind pressure = 21%

Error in calculated tie-down force = 74%
Stability Load Factors

<table>
<thead>
<tr>
<th>Load</th>
<th>BSI</th>
<th>ACI</th>
<th>FEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead Load</td>
<td>1.0</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>TL + LS</td>
<td>1.0</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Wind Load, 50-year</td>
<td>1.2</td>
<td>1.3*</td>
<td>1.2</td>
</tr>
<tr>
<td>MRI</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.6 with ASCE 7-02 “directionality factor”
Uplift: Factored vs. Service

<table>
<thead>
<tr>
<th>Load</th>
<th>Service</th>
<th>Factored</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Load Factor</td>
</tr>
<tr>
<td>Dead Load</td>
<td>-500</td>
<td>x 0.9 = -450</td>
</tr>
<tr>
<td>Wind Load</td>
<td>+450</td>
<td>x 1.3 = +585</td>
</tr>
<tr>
<td>Calculated Uplift</td>
<td>-50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>“No Uplift”</td>
<td>“Uplift”</td>
</tr>
</tbody>
</table>

64 of 77
Recommended Tie-down Strength Requirements

Design using Factored Load

Turnbuckle B.S. = $1.6^* \times$ factored load

Proof test to 100% of factored load

Structural components
Allowable stress of $0.9 \times F_{\text{yield}}$

* 2.5 for off-the-shelf turnbuckles.
Putting the Two Together
Problem Overview

Crane supplier and wharf designer work with incomplete and inconsistent data

Crane supplier generally uses Service Load approach

Wharf designer generally uses Factored Load approach

Neither knows what basis the other uses
Solution
Crane purchaser provide or facilitate detailed information.
Obtain From Wharf Designer

Assumed wheel arrangement

Service or factored

Load factors

Load combinations for operating, overload, and out-of-service conditions

Complete wind criteria

Allowable wheel loads, kips/ft*

* Crane supplier tends to provide kips/wheel
Example Combination Table: Service Wheel Loads

<table>
<thead>
<tr>
<th>Mode</th>
<th>Operating</th>
<th>Stowed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WOP1</td>
<td>WOP2</td>
</tr>
<tr>
<td>Dead Load</td>
<td>DL</td>
<td>1.0</td>
</tr>
<tr>
<td>Trolley Load</td>
<td>TL</td>
<td>1.0</td>
</tr>
<tr>
<td>Lift System</td>
<td>LS</td>
<td>1.0</td>
</tr>
<tr>
<td>Lifted Load</td>
<td>LL</td>
<td>1.0</td>
</tr>
<tr>
<td>Impact</td>
<td>IMP</td>
<td>1.0</td>
</tr>
<tr>
<td>Gantry Lateral</td>
<td>LATG</td>
<td>1.0</td>
</tr>
<tr>
<td>Op. Wind Load</td>
<td>WLO</td>
<td>1.0</td>
</tr>
<tr>
<td>Stall Torque Load</td>
<td>STL</td>
<td>1.0</td>
</tr>
<tr>
<td>Collision Load</td>
<td>COLL</td>
<td></td>
</tr>
<tr>
<td>Storm Wind Load</td>
<td>WLS</td>
<td></td>
</tr>
<tr>
<td>Earthquake Load</td>
<td>EQ</td>
<td></td>
</tr>
<tr>
<td>Allowable Wheel Loads (tons/wheel)</td>
<td>LS</td>
<td>50 x S</td>
</tr>
<tr>
<td></td>
<td>WS</td>
<td>65 x S</td>
</tr>
</tbody>
</table>

S = Average spacing, in meters, between the wheels at each corner.

Example:

\[S = 1.5 \text{ m}, \text{ Allowable LS Operating} = 50 \text{ t/m} \times 1.5 \text{ m} = 75 \text{ t/wheel} \]
Example Combination Table: Factored Wheel Loads

<table>
<thead>
<tr>
<th>Mode</th>
<th>Operating</th>
<th>Stowed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WOP1</td>
<td>WOP2</td>
</tr>
<tr>
<td>Dead Load</td>
<td>DL</td>
<td>1.2</td>
</tr>
<tr>
<td>Trolley Load</td>
<td>TL</td>
<td>1.2</td>
</tr>
<tr>
<td>Lift System</td>
<td>LS</td>
<td>1.2</td>
</tr>
<tr>
<td>Lifted Load</td>
<td>LL</td>
<td>1.6</td>
</tr>
<tr>
<td>Impact</td>
<td>IMP</td>
<td>0.8</td>
</tr>
<tr>
<td>Gantry Lateral</td>
<td>LATG</td>
<td>0.8</td>
</tr>
<tr>
<td>Stall Torque Load</td>
<td>STL</td>
<td></td>
</tr>
<tr>
<td>Collision Load</td>
<td>COLL</td>
<td></td>
</tr>
<tr>
<td>Storm Wind Load</td>
<td>WLS</td>
<td></td>
</tr>
<tr>
<td>Earthquake Load</td>
<td>EQ</td>
<td></td>
</tr>
<tr>
<td>Allowable Wheel Loads (tons/wheel)</td>
<td>LS</td>
<td>60 x S</td>
</tr>
<tr>
<td></td>
<td>WS</td>
<td>75 x S</td>
</tr>
</tbody>
</table>

S = Average spacing, in meters, between the wheels at each corner.

Example:

*S = 1.5 m, Allowable WS Storm = 100 t/m * 1.5 m = 150 t/wheel*
Ask Crane Supplier For

Wheel arrangement

Wheel loads for individual loads

Combined wheel loads for operating, overload, and out-of-service conditions

Complete wind criteria used and basis for shape factors

Individual and corner factored loads for tie-downs including direction of loading
Example Design Basic Load Table

Wharf Designer needs from Crane Supplier

<table>
<thead>
<tr>
<th></th>
<th>Seaside</th>
<th>Landside</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LHS</td>
<td>RHS</td>
</tr>
<tr>
<td>Dead load</td>
<td>boom down</td>
<td></td>
</tr>
<tr>
<td></td>
<td>boom up</td>
<td></td>
</tr>
<tr>
<td>TL + LS</td>
<td>outreach</td>
<td></td>
</tr>
<tr>
<td></td>
<td>backreach</td>
<td></td>
</tr>
<tr>
<td></td>
<td>parked</td>
<td></td>
</tr>
<tr>
<td>LL</td>
<td>outreach</td>
<td></td>
</tr>
<tr>
<td></td>
<td>backreach</td>
<td></td>
</tr>
<tr>
<td>IMP</td>
<td>outreach</td>
<td></td>
</tr>
<tr>
<td></td>
<td>backreach</td>
<td></td>
</tr>
<tr>
<td>LATT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LATG</td>
<td>outreach</td>
<td></td>
</tr>
<tr>
<td></td>
<td>backreach</td>
<td></td>
</tr>
<tr>
<td>OWLx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OWLz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OWL< (Angled Max)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLL</td>
<td>boom down</td>
<td></td>
</tr>
<tr>
<td></td>
<td>boom up</td>
<td></td>
</tr>
<tr>
<td>EQx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWLx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWLz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWL< (Angled Max)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Recap

Obtain detailed crane and wharf design data
Stick to one crane design code
Stick to one wharf design code
Use consistent design basis

Facilitate communication
Q & A
Crane Loads & Wharf Structure Design: Putting the Two Together

Thank you

This presentation will be available for download on Liftech’s website:
www.liftech.net

Arun Bhimani, S.E.
President
Liftech Consultants Inc.
www.liftech.net

Erik Soderberg, S.E.
Principal
Liftech Consultants Inc.
Liftech Consultants Inc. file data:
N:\Papers & Presentations\Working\AAPA 2006\Crane_Loads_and_Wharf_Design_AAPA..ppt

Copyright 2006 by Liftech Consultants Inc. All rights reserved.
The information included in this presentation may not be altered, copied, or used without written authorization from Liftech Consultants Inc. Anyone making use of the information assumes all liability arising from such use.

Quality Assurance Review:
Author: Arun Bhimani
Editor: Erik Soderberg
Principal: Arun Bhimani
Liftech Consultants Inc. Presentation Source Documentation:

Source documents will be stored in: Presentation\Waiting to Archive\AAPA 2006\Crane_Loads

FYI - Much content originally came from the TOC 2005 Europe presentation.