

AAPA Harbors, Navigation and Environment Seminar Vancouver, B.C.

Estimating Emissions From Container Cargo Operations Using a Comprehensive Container Terminal Model

June 7, 2006

Moffatt & Nichol

- MN has a deep understanding of marine and intermodal container terminal operations due to;
 - Years of working directly with terminal operators on analysis of day-to-day operations
 - Years of development of models to analyze;
 - Capacity & productivity
 - Berths, gates, container yards, rail yards
 - Equipment fleet sizing
 - Operating cost
 - Comparison of alternatives

Integrated Container Port Model

- Throughput driven
- Activity based
 - Maps and counts individual cargo handling activities
- Calculates emissions from all aspects of port operations
 - Vessels and tugs
 - Dock cranes and stevedoring equipment
 - Yard handling and stacking equipment
 - Rail equipment, switchers, line-haul locomotives & dray vehicles
 - Road trucks
 - arriving/departing through the gate
 - being served within terminal
 - outside port within AQMA

Integrated Throughput Forecasting and Capacity

- Throughput forecasting model imbedded
- Truck and train trip generation model (Quicktrip) imbedded
- Capacity calculations imbedded
 - Berth
 - Yard
 - Gate
 - On-terminal rail yard
 - Pop-ups warn user when a component capacity is exceeded

Smart Model for North American Terminals

- Built-in typical N.A. operating modes
 - Wheeled / grounded
 - Automatically assigns percent grounded
 - Automatically assigns yard to RMG's when threshold throughput density is reached
 - RTG
 - Top-pick
 - RTG augmented with top-picks
 - Side Handlers
 - Strad
 - RMG

Allows user to define custom operating modes

Benefits of Spreadsheet Format

- Model is transparent
 - No black box
- Results are defendable
- All assumptions can be easily viewed and modified by the user
- Results are presented in tables and charts, intuitive to understand and use as basis for making decisions
- Model is useful for comparing different emissions reductions strategies because iterations can be accomplished quickly

Model Input Parameters

- Current year throughput
- Projected growth rate and year to be analyzed
- Terminal Layout
 - Gross terminal area
 - Net storage yard area
 - Wharf length
 - Average travel distances within the terminal
 - Gate to centroids of storage yard
 - Wharf to centroids of storage yard
 - Chassis areas, roadability, etc.

Model Input Parameters (continued)

- Throughput Distribution
 - % Local Imports
 - % Local Exports
 - % Intermodal Imports (on- and off-dock rail)
 - % Intermodal Exports (on- and off-dock rail)
 - % Empties
- Vessel call schedules
 - Vessel sizes in TEU
 - Scheduled arrival day and time
 - Discharge and load percentages (or lifts per call)
 - Cold-ironed? Ship in a slip?

Model Input Parameters (continued)

- Vessels
 - Distance from breakwater (or sea buoy) to Air Quality District boundary
 - Maneuvering distance from breakwater to terminal
 - Distances, speeds and throttle positions (from pilots)
 - Main engine & auxiliary power (bow thrusters)
- On-Dock Rail Operating Parameters
- Gate Operating Parameters
- Road trucks outside the terminal
 - travel speeds
 - travel distances
 - Congestion level (from regional transportation model)

Intermediate Results

- Model produces useful planning and capacity information based on the user inputs
 - Throughput forecast in analysis year
 - Throughput and berth occupancy for given ship call schedule
 - Throughput density (TEU/gross acre and TEU/net acre)
 - Wheeled to grounded ratio required to accommodate throughput density
 - Number of road truck arrivals and departures per day and per hour
 - Train and switcher movements
 - On-dock rail yard capacity
 - Yard equipment fleet sizing

Final Results

- Total trips per ship service, hours in mode for container handling equipment and switchers, truck trips by type and time of day
- Using selectable emission factors (lastest study factors are the default) Emissions by type (NO_X, SO_X, PM, HC, CO) are calculated for each equipment type
- Results are reported both graphically and in table format
- Results are given for an average week and per year
- Emissions calculations follow EPA best practices guide for Port Emission Inventories

Model Methodology-Container Handling Equipment

Step 1

Select or Input typical cycle of each type of CHE, breaking it up into modes (travel, lift, idle etc.), based on terminal layout

Step 2

Select or input the HP demand in each mode

Step 3

Calculate a load factor for each mode, based on the relationship between hp required and installed hp of representative pieces of the particular CHE fleet.

Step 4

Use latest or selectable emission factors, hours in mode from model and calculated load factor to calculate emissions

Horsepower Demand per Cycle Example

Activities: RTG Delivering an Import (from stack to truck)

- gantry to bay
- trolley to stack
- lower spreader
- position spreader
- latch on to box
- hoist box
- move box over truck lane
- lower box over chassis
- position
- release box
- raise spreader
- wait for next truck
- repeat

Truck Trips Generated by Hour of Day

"Quicktrip" traffic generation component

Model Applications

- Emissions benefits analysis
 - Cold ironing & enforcement policy decisions
 - Alternative fuels
 - Neutral chassis pools
 - Lower in-terminal turn-time
 - Gate technologies
 - Effect of reduced process time & queuing on idle and creep idle times
 - Truck traffic reduction strategies
 - "Pier pass"
 - Appointments
 - Virtual container yards
 - Shuttle trains
 - Off-dock storage yards

Example 1; Analysis of Benefits of a New Rail Line

- Virginia Port Authority
- Proposed new rail line will reduce local truck trips
- Model used to quickly calculate the net savings between reduced truck trips and additional train trips

Example 1; Emissions Reduction of New Rail Line

Example 2; NOx Calculation for Straddle Carriers

Virginia Port Authority

CHE Standard Calculation Example, One Straddle Carrier		Terminal Model Example, One Straddle Carrier					
Installed HP 354 BH	-IP	Installed HP	354	BHP			
Hours 3,000 Re	eported hrs	Hours	3,000	* modeled hours are expected to be lower			
Load Factor 71% De	efault Nonroad						
					<u>Load</u>		
					Factor in	Emission	
Nox Emission F 6.02 gr/	/bhp-hr		<u>% Time</u>	<u>Hours</u>	<u>Mode</u>	Factor	<u>Nox (tons)</u>
		Travel Loaded	29%	870	70%	6.02	1.43
		Travel UnLoaded	23%	690	50%	6.02	0.81
		Lift Loaded	3%	90	80%	6.02	0.17
		Lift/Lower Unloaded	2%	60	50%	6.02	0.07
		Idle	43%	1,290	10%	6.02	0.30
Total Nox 5.0 tor	ns	Total		3,000	40%	NOx tons	2.78
						Reduction	44%

Even while holding the reported hours the same, by breaking down the cycle of the strad, the emssions dropped by 60% Model Driven Hours are likely to be lower, further driving down emissions Default Non-road and Onroad load factors are often over 50%, as high as 71%

Advantages of a Terminal Model Driven Estimate of Emissions

Terminal Model Driven Emissions Allow for:

- Projection of Emissions as Throughput Increases, accounting for changes in ship size, terminal layout and operating mode
- What-ifs to be run on questions such as the emission impact of:
 - Gate Modifications (hours, number of lanes etc.)
 - Operating Mode Changes (Stads, RMG, RTG)
 - Modal Changes, increasing % rail

Traditional Inventories - listing equipment and surveying hours of operation. The areas for improvement in this approach are:

- Standard Inventories are dependent on the fleet and reported operating hours of terminal equipment operators
 - Fleet size and utilization varies greatly among ports
- Collecting equipment lists and operating hours is labor intensive and does not allow for projection of emissions as throughput grows and operating modes change
- Lengthy data collection results in inventories that are often years old by the time they are completed.

Conclusions

- Terminal Capacity Models have been in existence for many years, used to:
 - Forecast throughput capacity
 - Compare alternatives
 - Identify Bottlenecks
 - Forecast Labor & Equipment Needs
 - Evaluate Operating Cost
 - Evaluate Potential Layout & Operating Changes
- Leveraging these Existing Tools to Address the Issue of Emissions Forecasting is the Natural Development of Terminal Planning in the 21st century

THANK You!

