Getting Back on Track

Assuring Necessary Maintenance Dredging in Channels and Harbors Impacted by Contaminated Sediments

> Philip Spadaro, L.G. Blasland, Bouck & Lee, Inc. 2300 Eastlake Avenue Suite 100 Seattle, WA 98102

AAPA Harbors, Navigation & Environment Seminar Vancouver, British Columbia June 2006

Recontamination of Sediments -Can you afford it ?

- Continuation of high unit cost of dredging and disposal
- Slower project permitting, development, and execution
- Possible natural resource damage claims
- Possible operational concerns

What is a Source?

- Upstream
- Industrial discharges
- Stormwater outfalls
- Groundwater discharges
- Direct runoff and bank erosion
- Contaminated sediment
- Atmospheric deposition
- Existing and future structures
 - Operations
 - Material handling
 - Spills
 - Vessels

Geochemical Model of Sources

Recontamination Analysis

Objective is to assess the potential for post-dredging recontamination of sediment

This is done by:

- Determining potential sources
- Collecting data from sources
- Evaluating recontamination potential

Conceptual Model of Recontamination

Total Mass of COCPs Deposited on an Annual Basis

Sediment Traps

Holes for lifting harness

Aluminum and stainless frame construction

Rubber bungee tying trap to base

Plastic turbulence flow baffle to cover top of trap tubes (3 layers of ½" grid)

Professional diver for installation

Plastic 15-tube magazine (1/4" Delran®)

Plastic trap case

Pyrex sample tubes 3-inch diameter, 21-inch long "test tube" bottom plastic cap

Concrete base with positioning brackets and lifting rings

Sediment Traps

Resuspension from vessel movements

Sediment Trap Recovery

Stormwater as a Source

Storm Drain Traps

Future Sediment Concentrations

Three steps to modeling exercise:

- Measure the annual mass from each source
- Estimate the mass flux from each source to sediment
- Calculate the predicted future surface sediment concentration

Relative Annual Mass Loading

Estimated Post-Dredging Concentrations

Stormwater Source Control Measures

Recontamination of Sediments – Can it be Avoided?

- To begin, lead by example control your own sources
- Question funding priorities that do not address source control
- Set a goal for cleaner sediment don't accept contamination as the new norm
- Take an active role in basin-wide source control
- Demand a "clean upstream" for your port
- Take an active role in evaluating private cleanups in or near your port
- Consider delay of cleanups without sufficient demonstration of source control

Happy Dredging!

