Crane Loads & Wharf Structure Design: Putting the Two Together

AAPA Facilities Engineering Seminar January 2006 – Jacksonville, Florida

Arun Bhimani, S.E. President Liftech Consultants Inc.

Erik Soderberg, S.E.

Principal Liftech Consultants Inc. *www.liftech.net*

Crane Size Growth: 1st Container Crane & Jumbo Crane

Crane Service Wheel Loads

Waterside Operating Wheel Loads

Crane Loads

Crane loads increasing Codes becoming more complex Consequences of misapplication more severe

Chance of engineering errors increasing

Presentation Outline

The Problem – Overview Wharf Designer's Perspective **Crane Designer's** Perspective Putting the Two Together Q&A and Feedback

The Problem – Overview

Crane Purchaser Difficulties

Purchaser specified

"Allowable wheel load: 200 kips/wheel"

Suppliers submit

Supplier A180 k/wheelSupplier B200 k/wheelSupplier C220 k/wheel

Which suppliers are compliant?

Crane Supplier Difficulty

Purchaser specified

Allowable wheel load: 200 kips/wheel In some cases, linear load (kips/ft) Not defined Operating or out-of-service? Unfactored or factored? Wind profile? Increase for storm condition?

Wharf Designer Difficulty

- Client provides limited crane load data
- No loading pattern
- No basis given Unfactored or factored?
- Same loads given for landside and waterside
- No details of wind or seismic criteria

Wharf Designer Perspective

10 of 85

Wharf Designer Perspective **Codes and Design Principle** Crane Girder Design **Design for Tie-down Loads** Crane Stop Design Seismic Design Considerations

Codes and Design Principle

12 of 85

Design Codes & Standards

Crane FEM, DIN, BS, AISC ..., Liftech

Wharf Structures

ACI 318 Building Code and Commentary

ASCE 7-05 Minimum Design Loads for Buildings and

Other Structures AISC Steel Construction Manual

Design Principle - Wharf Structure Design

Load Resistance Factored Design (LRFD) Required Strength \leq Design Strength

Required Strength = \sum Service Loads * Load Factors

Design Strength = Material Strength * Strength Reduction Factor Φ

Load Factors & \Phi Factors

ACI	Load Factors			Concrete Φ Factors			
318	D	L	W	Ten	Comp	Shear	
to 2002	1.4	1.7	1.3	0.90	0.75/.7	0.85	
2002+	1.2	1.6	1.6*	0.90	0.70/.6	0.75	
					5		

* 1.3 if directionality factor is not included

Design Principle – Soil Capacity

- **Allowable Stress Design**
- Generally use service loads
- Factor of safety typically 2.0 for operating
- 1/3 increase for storm wind or overload

Crane Girder Design

Required Crane Geometry Data

CONSULTAN

Typical Wheel Loading Geometry

Typical Wheel Spacing

Recommended Wheel Design Load Geometry 40' 40' 40'

Dead Loads and Live Loads

Wharf Loads

D – Wharf structure self weight

L – Wharf live load, includes containers and yard equipment (does not control)

Crane Loads (ASCE 7-05)

- D Weight of crane excluding lifted load
- L Lifted load or rated capacity

ACI Load Factors – Crane Loading

ACI 318	Load Factors				
Year	D	L	Composite		
to 2002	1.4	1.7	1.45		
2002+	1.2	1.6	1.30		

Some designers treat crane dead load as live load and use the 1.6 factor. This results in 23% overdesign; 1.6 / 1.3 = 1.23.

Example Combination Table: Service Wheel Loads

Mode	Operating				Stowed	
		WOP1	WOP2	WOP3	WOP4	WS1
Dead Load	DL	1.0	1.0	1.0	1.0	1.0
Trolley Load	TL	1.0	1.0	1.0	1.0	1.0
Lift System	LS	1.0	1.0		1.0	1.0
Lifted Load	LL	1.0	1.0		1.0	
Impact	IMP		0.5			
Gantry Lateral	LATG	1.0				
Op. Wind Load	WLO		1.0	1.0		
Stall Torque Load	STL			1.0		
Collision Load	COLL				1.0	
Storm Wind Load	WLS					1.0
Earthquake Load	EQ					
Allowable Wheel LS Loads (tons/wheel) WS			70 x S			
			90 x S			

S = Average spacing, in meters, between the wheels at each corner. <u>*Example:*</u>

S = 1.5 m, Allowable LS Operating = 50 t/m * 1.5 m = 75 t/wheel

Example Combination Table: Factored Wheel Loads

Mode	Operating				Stowed		
		WOP1	WOP2	WOP3	WOP4	WS1	
Dead Load	DL	1.2	1.2	1.0	1.0	1.2	
Trolley Load	TL	1.2	1.2	1.0	1.0	1.2	
Lift System	LS	1.2	1.2		1.0	1.2	
Lifted Load	LL	1.6	1.6		1.0		
Impact	IMP		0.8				
Gantry Lateral	LATG	0.8					
Stall Torque Load	STL			1.0			
Collision Load	COLL				1.0		
Storm Wind Load	WLS					1.6	
Earthquake Load	EQ						
Allowable Wheel	wable Wheel LS		60 x S				
Loads (tons/wheel)	WS	75 x S				100 x S	

S = Average spacing, in meters, between the wheels at each corner. *Example:*

S = 1.5 m, Allowable WS Storm = 100 t/m * 1.5 m = 150 t/wheel

Tie-down Design

Multiple Tie-downs at a Corner

Uneven tie-down forces

Causes of Uneven Distribution

Some reasons why forces are not evenly distributed:

Crane deflection

Contruction tolerances

Wharf pins not centered

Links not perfectly straight due to friction

Tie-down Manufacturers typically provide the service corner uplift force

Needed data:

Factored corner uplift force

Distribution between tie-downs

Direction of force (allow for slight angle)

Crane Stop Design

29 of 85

Bumper Load Provided by Manufacturer

Rated Bumper Reaction

Bumpers sized for collision at maximum gantry speed

Does not address runaway crane

Recommended Crane Stop Design Load

Tipping Force

H= maximum load that can develop, i.e. the load at which the crane tips.

D = crane weight

H = approximately 0.25 x D per stop

Wharf Seismic Design – Crane Loading

- The mass of typical jumbo A-frame cranes can be ignored
- For certain wharves and cranes, a time-history analysis may be necessary
- Large, short duration wheel loads can be ignored
- Localized rail damage may occur
- The crane may derail

Crane Designer Perspective

Crane Designer Perspective

Basic Loads Storm Wind Load Load Combinations and Factors Tie-down Loads

Basic Loads

Inertial Loads

IMP: Vertical impact due to hoist acceleration

LATT: Lateral due to trolley acceleration

LATG: Lateral due to gantry acceleration

COLL: Collision

SNAG: Snagging headblock

STALL: Stalling hoist motors

Normally do not control

Environmental Loads

- WLO: Wind load operating (In-Service)
- WLS*: Wind load storm (Out-of-Service)
- EQ: Earthquake load

*Often a major source of discrepancies

Wind Load, Out-of-Service

WLS: Out-of-Service Wind

- Wind Force = $\sum A \times C_f \times q_z$
 - A = Area of crane element
 - C_f = Shape coefficient (including shielding) } From wind
 - q_z = Dynamic pressure, function of:
 - Mean recurrence interval (MRI)
 - Gust duration

 $V_{\rm ref}^2$, where V_{ref} is a location-specific, code-specified reference wind speed

Exposure (surface roughness)

Need to clearly specify

tunnel testino

Shape Coefficient, C_f

Empirical values: FEM, BSI, etc.

Wind tunnel tests are more accurate

Boundary layer Angled wind effects Shielding effects

WLS: Mean recurrence interval (MRI)

- Wind Force = $\sum A \times C_f \times q_z$
 - A = Area of element
 - C_f = Shape coefficient (including shielding) } From wind tunnel testing
 - q_z = Dynamic pressure, function of:
 - Mean recurrence interval (MRI)
 - Gust duration

 $V_{\it ref}^2$, where $V_{\rm ref}$ is a location-specific, code-specified reference wind speed

Exposure (surface roughness)

Need to clearly specify

Mean Recurrence Interval

Probability of Speed Being Exceeded

	Years in Operation						
MRI	1	10	25	50	100		
10 yrs	.10	.64	.93	.99	.99997		
25 yrs	.04	.34	.64	.87	.98		
50 yrs	.02	.18	.40	.64	.87		
100 yrs	.01	.10	.22	.39	.64		

Example:

Chance of 50-yr wind being exceeded in 25 years: 40%

WLS: Gust duration

Wind Force = $\sum A \times C_f \times q_z$ A = Area of crane element C_f = Shape coefficient (including shielding) } From wind tunnel testing q_z = Dynamic pressure, function of: Mean recurrence interval (MRI) Gust duration

 $V_{\rm ref}^2$, where V_{ref} is a location-specific, code-specified reference wind speed

Exposure (surface roughness)

Need to clearly specify

Gust Duration

Time

Wind Speed vs. Gust Duration

Ratio of probable maximum speed averaged over "t" seconds to hourly mean speed. Reference, ASCE 7-05.

 V_t / V_{hour}

Gust Duration (seconds)

Code Gust Durations

Code definitions of basic wind speed

Code	Gust Duration	MRI
EN 1991-1-	10 min	50 yrs
4 FEM 1.004	10 min	50 yrs
ASCE 7-02	3 sec	50 yrs
HK 2004	3 sec	50 yrs

Typical Pressure Profiles

Shape of profile depends on surrounding surface roughness

Variation in WLS

Variable	Variation	Effect on V	Effect on F *
MRI	25 to 50 yrs	7.5%	15.6%
Gust duration	3 sec to 10 min	46%	113%
Profile	Open terrain to ocean exposure	5-10%	10-20%

*See later slides for effect on calculated tie-down load!

Recommendations for Specifying WLS

Return Period Use 50-yr MRI Basic wind speed Gust duration > Use local civil code

Shape coefficients Wind tunnel tests

Do not mix and match between codes for pressure and load factors !

Profile

Other factors

Corner Reactions – Angled Wind

Do not use spreadsheet !

Use frame analysis program

Frame stiffness is significant to reactions

Load Combinations Crane Design

Load Combinations

Load combinations Operating Overload Storm wind (out-of-service) Design approaches Generally Allowable Stress Design (ASD)

Operating Condition Loads

- DL: Crane weight*
- LL: Rated container load
- IMP & LAT: Inertial loads
- WLO: Wind load, in service

*Excluding Rated Load

Out-of-Service & Overload

- DL: Crane weight*
- WLS: Wind load storm (out-of-service)

Overload Conditions (in and out-of-service)

*Including trolley and lift system

Recommendations

Requesting crane wheel load data Specify wind criteria Ask for basic loads Combine per ACI load factors

Requesting crane bids Provide factored load tables Ask to fill in tables Specify allowable factored loads

Tie-down Loads

Tie-Down Failures

Wind Load & Crane Reactions

60 of 85

Error in Calculated Tie-down Force

Ratio of moments:

$$\gamma = \frac{F_{wind}h}{D\frac{B}{2}} =$$

Overturning Moment Righting Moment

Error in calculated tie-down force: error in wind force,

$$\frac{F_{Tiedown,Actual}}{F_{Tiedown,Calculated}} = \frac{\frac{1}{A} \left[(1+e)F_{Wind}h - D\frac{B}{2} \right]}{\frac{1}{A} \left[F_{Wind}h - D\frac{B}{2} \right]} = \frac{(1+e)\gamma - 1}{\gamma - 1}$$

Fwind

Fstow pin

Error in Tie-down Force

Example:

Error in wind speed = 10%; $\gamma = 1.4$ Error in wind pressure = 21%

Stability Load Factors

Load		Factor	•
	BSI	ACI	FEM
Dead Load	1.0	0.9	1.0
TL + LS	1.0	0.9	1.0
Wind Load, 50-year	1.2	1.3*	1.2
MRI			

* 1.6 with ASCE 7-02 "directionality factor"

Uplift: Factored vs. Service

	Service	Factored
Load		Load Factor
Dead Load	-500	x 0.9 = -450
Wind Load	+450	x 1.3 = +585
Calculated Uplift	-50	+135
	"No Uplift"	"Uplift"

Putting the Two Together

Problem Recap

Crane supplier and wharf designer work with incomplete and inconsistent data

Reasons:

Crane supplier generally uses Service Load approach

Wharf designer generally uses Factored Load approach

Neither knows what basis the other uses

Solution

Obtain From Wharf Designer

- Assumed wheel arrangement
- Service or factored
- Load factors
- Load combinations for operating, overload, and out-of-service conditions
- Complete wind criteria
- Allowable wheel loads, kips/ft*
- * Crane supplier tends to provide kips/wheel

Example Combination Table: Service Wheel Loads

Mode		Operating				Stowed
		WOP1	WOP2	WOP3	WOP4	WS1
Dead Load	DL	1.0	1.0	1.0	1.0	1.0
Trolley Load	TL	1.0	1.0	1.0	1.0	1.0
Lift System	LS	1.0	1.0		1.0	1.0
Lifted Load	LL	1.0	1.0		1.0	
Impact	IMP		0.5			
Gantry Lateral	LATG	1.0				
Op. Wind Load	WLO		1.0	1.0		
Stall Torque Load	STL			1.0		
Collision Load	COLL				1.0	
Storm Wind Load	WLS					1.0
Earthquake Load	EQ					
Allowable Wheel LS		50 x S				70 x S
Loads (tons/wheel)	WS		65	x S		90 x S

S = Average spacing, in meters, between the wheels at each corner. *Example:*

S = 1.5 m, Allowable LS Operating = 50 t/m * 1.5 m = 75 t/wheel

Example Combination Table: Factored Wheel Loads

Mode		Operating				Stowed
		WOP1	WOP2	WOP3	WOP4	WS1
Dead Load	DL	1.2	1.2	1.0	1.0	1.2
Trolley Load	TL	1.2	1.2	1.0	1.0	1.2
Lift System	LS	1.2	1.2		1.0	1.2
Lifted Load	LL	1.6	1.6		1.0	
Impact	IMP		0.8			
Gantry Lateral	LATG	0.8				
Stall Torque Load	STL			1.0		
Collision Load	COLL				1.0	
Storm Wind Load	WLS					1.6
Earthquake Load	EQ					
Allowable Wheel	LS	60 x S				80 x S
Loads (tons/wheel)	WS	75 x S			100 x S	

S = Average spacing, in meters, between the wheels at each corner. *Example:*

S = 1.5 m, Allowable WS Storm = 100 t/m * 1.5 m = 150 t/wheel

Ask Crane Supplier For

- Wheel arrangement
- Wheel loads for individual loads
- Combined wheel loads for operating, overload, and out-of-service conditions
- Complete wind criteria used and basis for shape factors
- Individual and corner factored loads for tie-downs including direction of loading

Example Design Basic Load Table

Wharf Designer needs from Crane

Sunnlie			Wheel Load			
Oupplic			Sea	side	Landside	
			LHS	RHS	LHS	RHS
	Dead load	boom down				
		boom up				
	TL + LS	outreach				
		backreach				
		parked				
	LL	outreach				
		backreach				
	IMP	outreach				
		backreach				
	LATT					
	LATG	outreach				
		backreach				
	OWLx					
	OWLz					
	OWL< (Angled Max)					
	Stall					
	COLL	boom down				
		boom up				
	EQx					
	EQz					
	SWLx					
	SWLz					
	SWL< (Ang	(led Max)				

Obtain detailed crane and wharf design data

Stick to one crane design code Stick to one wharf design code Use consistent design basis

Facilitate communication

Q&A

76 of 85

Crane Loads & Wharf Structure Design: Putting the Two Together

Thank you

This presentation will be available for download on Liftech's website:

www.liftech.net

Arun Bhimani, S.E.

President Liftech Consultants Inc. *www.liftech.net*

Erik Soderberg, S.E.

Principal Liftech Consultants Inc.

