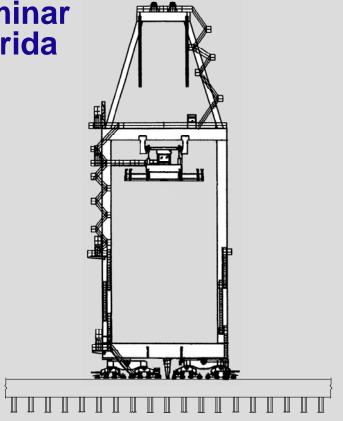
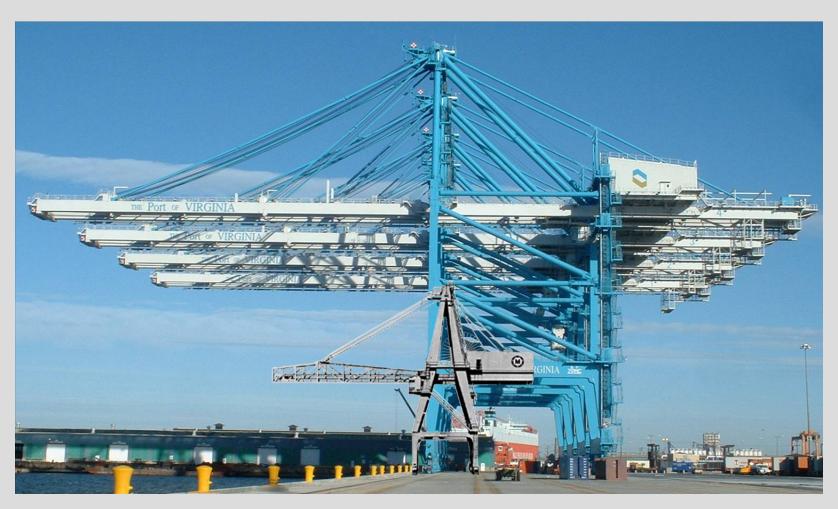
Crane Loads & Wharf Structure Design: Putting the Two Together


AAPA Facilities Engineering Seminar January 2006 – Jacksonville, Florida

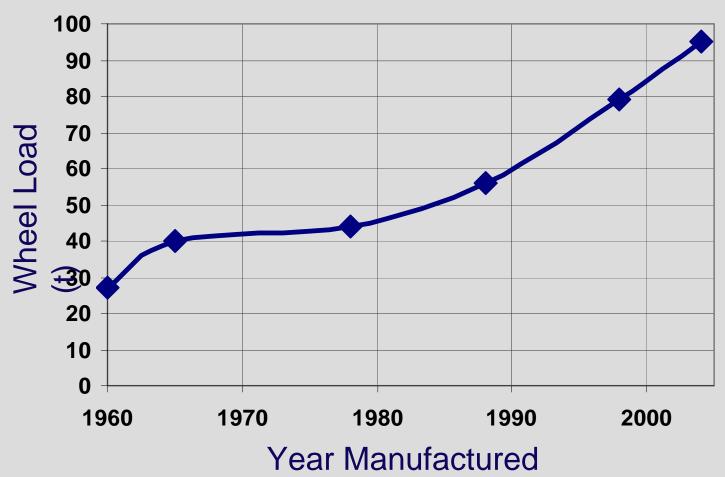
Arun Bhimani, S.E.

President Liftech Consultants Inc.

Erik Soderberg, S.E.


Principal
Liftech Consultants Inc.
www.liftech.net

Crane Size Growth:


1st Container Crane & Jumbo Crane

Crane Service Wheel Loads

Waterside Operating Wheel Loads

Crane Loads

Crane loads increasing

Consequences of misapplication more severe

Codes becoming more complex

Chance of engineering errors increasing

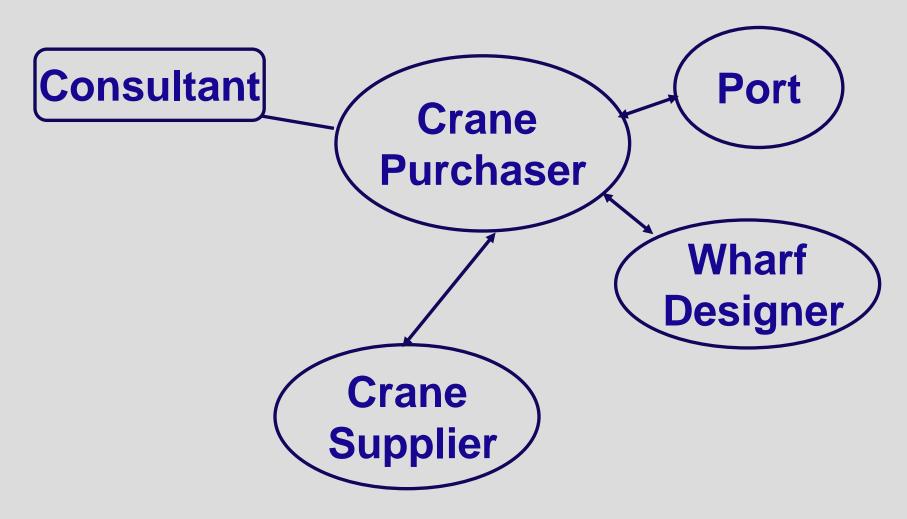
Presentation Outline

The Problem – Overview

Wharf Designer's

Perspective

Crane Designer's


Perspective

Putting the Two Together

Q&A and Feedback

The Problem – Overview

Crane Purchaser Difficulties

Purchaser specified

"Allowable wheel load: 200 kips/wheel"

Suppliers submit

Supplier A 180 k/wheel

Supplier B 200 k/wheel

Supplier C 220 k/wheel

Which suppliers are compliant?

Crane Supplier Difficulty

Purchaser specified

Allowable wheel load: 200 kips/wheel

In some cases, linear load (kips/ft)

Not defined

Operating or out-of-service?

Service or factored?

Wind profile?

Increase for storm condition?

Wharf Designer Difficulty

Client provides limited crane load data

No loading pattern

No basis given – Service or factored?

Same loads given for landside and waterside

No details of wind or seismic criteria

Wharf Designer Perspective

Codes and Design Principle

Crane Girder Design

Design for Tie-down Loads

Crane Stop Design

Seismic Design Considerations

Codes and Design Principle

Design Codes & Standards

Crane

FEM, DIN, BS, AISC ..., Liftech

Wharf Structures

ACI 318 Building Code and Commentary

ASCE 7-05 Minimum Design Loads for Buildings and

Other Structures

AISC Steel Construction

Manual

Design Principle - Wharf Structure Design

Load Resistance Factored Design (LRFD)Required Strength ≤ Design Strength

Required Strength = \sum Service Loads * Load Factors

Design Strength = Material Strength * Strength Reduction Factor Φ

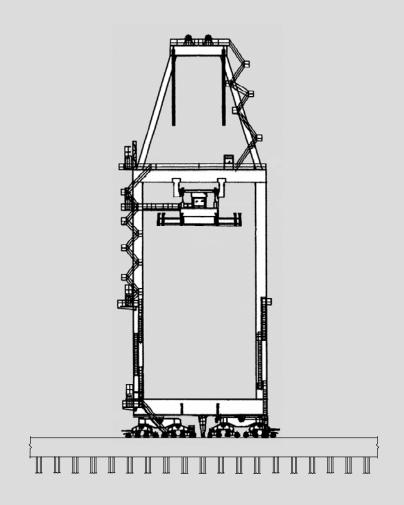
Load Factors & Pactors

ACI 318	Load Factors			Concrete Φ Factors			
	D	L	W	Ten	Comp	Shear	
to 2001	1.4	1.7	1.3	0.90	0.75/.7	0.85	
from	1.2	1.6	1.6*	0.90	0.7%/.6	0.75	

2002

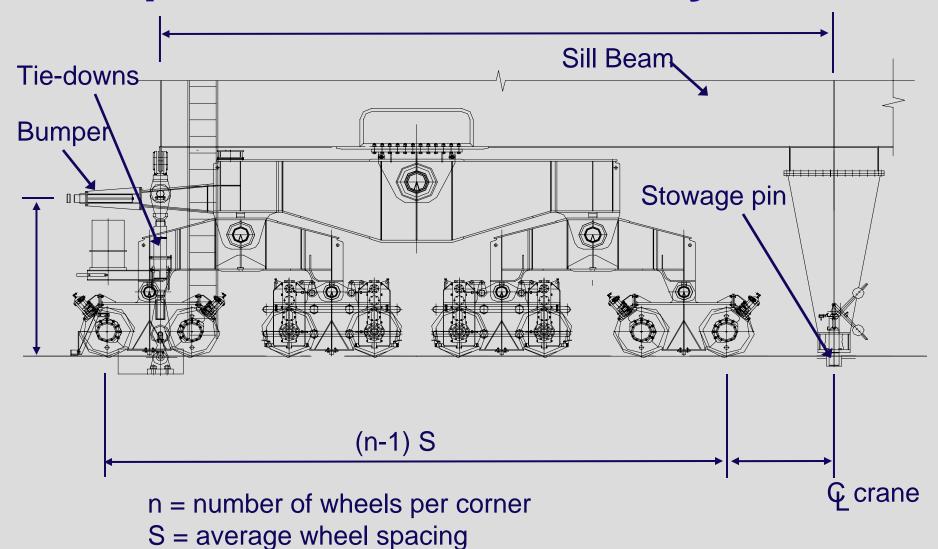
^{* 1.3} if directionality factor is not included

Design Principle – Soil Capacity

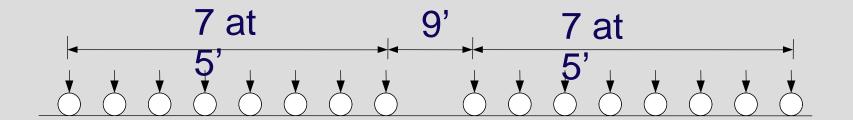

Allowable Stress Design

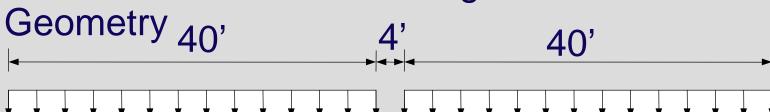
Generally use service loads

Factor of safety typically 2.0



Crane Girder Design


Required Crane Geometry Data


Liftech

Typical Wheel Loading Geometry

Typical Wheel Spacing

Recommended Wheel Design Load

Dead Loads and Live Loads

Wharf Loads

- D Wharf structure self weight
- L Wharf live load, includes containers and yard equipment (does not control)

Crane Loads (ASCE 7-05)

- D Weight of crane excluding lifted load
- L Lifted load or rated capacity

ACI Load Factors – Crane Loading

ACI 318	Load Factors				
Year	D	L	Composite		
to 2001	1.4	1.7	1.45		
from 2002	1.2	1.6	1.30		

Some designers treat crane dead load as live load and use the 1.6 factor. This results in 23% overdesign;

1.6 / 1.3 = 1.23.

Example Combination Table: Service Wheel Loads

Mode	Operating				Stowed	
		WOP1	WOP2	WOP3	WOP4	WS1
Dead Load	DL	1.0	1.0	1.0	1.0	1.0
Trolley Load	TL	1.0	1.0	1.0	1.0	1.0
Lift System	LS	1.0	1.0		1.0	1.0
Lifted Load	LL	1.0	1.0		1.0	
Impact	IMP		0.5			
Gantry Lateral	LATG	1.0				
Op. Wind Load	WLO		1.0	1.0		
Stall Torque Load	STL			1.0		
Collision Load	COLL				1.0	
Storm Wind Load	WLS					1.0
Earthquake Load	EQ					
Allowable Wheel	LS	50 x S			70 x S	
Loads (tons/wheel) WS		65 x S				90 x S

S = Average spacing, in meters, between the wheels at each corner. *Example:*

S = 1.5 m, Allowable LS Operating = 50 t/m * 1.5 m = 75 t/wheel

Example Combination Table: Factored Wheel Loads

Mode		Stowed				
		WOP1	WOP2	WOP3	WOP4	WS1
Dead Load	DL	1.2	1.2	1.0	1.0	1.2
Trolley Load	TL	1.2	1.2	1.0	1.0	1.2
Lift System	LS	1.2	1.2		1.0	1.2
Lifted Load	LL	1.6	1.6		1.0	
Impact	IMP		0.8			
Gantry Lateral	LATG	0.8				
Stall Torque Load	STL			1.0		
Collision Load	COLL				1.0	
Storm Wind Load	WLS					1.6
Earthquake Load	EQ					
Allowable Wheel	LS	60 x S			80 x S	
Loads (tons/wheel) WS		75 x S				100 x S

S = Average spacing, in meters, between the wheels at each corner. *Example:*

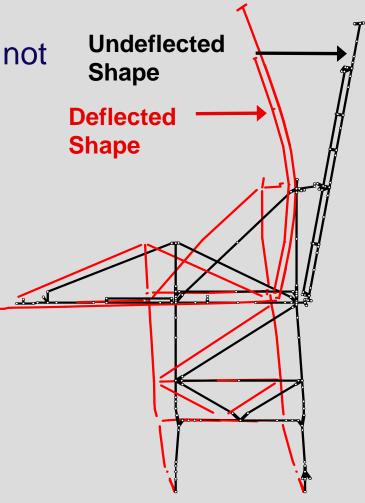
S = 1.5 m, Allowable WS Storm = 100 t/m * 1.5 m = 150 t/wheel

Design for Tie-down Loads

Multiple Tie-downs at a Corner

Uneven tie-down forces

Causes of Uneven Distribution


Some reasons why forces are not evenly distributed:

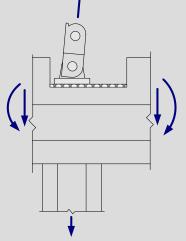
Crane deflection

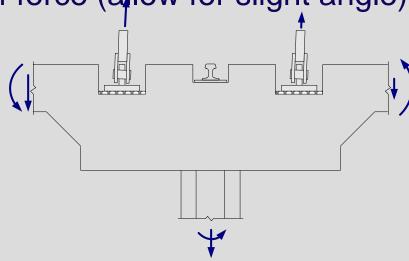
Contruction tolerances

Wharf pins not centered

Links not perfectly straight due to friction

Tie-down


Manufacturers typically provide the service corner uplift force

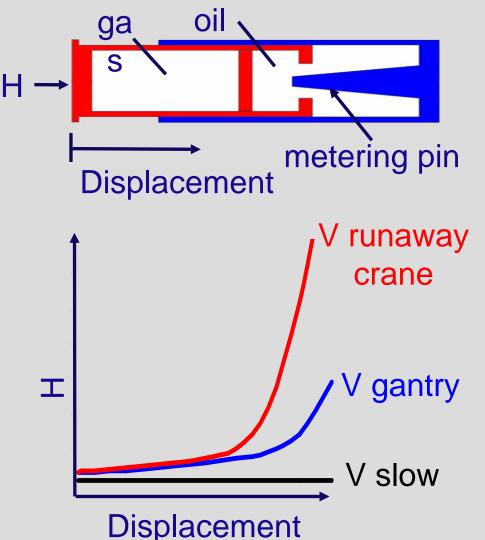

Needed data:

Factored corner uplift force

Distribution between tie-downs

Direction of force (allow for slight angle)

Crane Stop Design

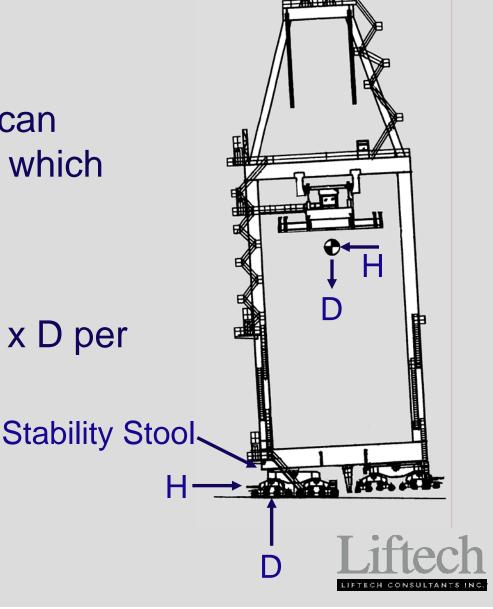


Bumper Load Provided by Manufacturer

Rated Bumper Reaction

Bumpers sized for collision at maximum gantry speed

Does not address runaway crane


Recommended Crane Stop Design Load

Tipping Force

H= maximum load that can develop, i.e. the load at which the crane tips.

D = crane weight

 $H = approximately 0.25 \times D per stop$

Wharf Seismic Design – Crane Loading

The mass of typical jumbo A-frame cranes can be ignored

For certain wharves and cranes, a time-history analysis may be necessary

Large, short duration wheel loads can be ignored

Localized rail damage may occur

The crane may derail

Crane Designer Perspective

Basic Loads

Storm Wind Load

Load Combinations and Factors

Tie-down Loads

Basic Loads

Dead and Live Loads Dead Live Loads

Loads

DL: Crane structure weight

TL: Trolley structure weight

Cran
e
Trolley
Lift
Syste
Syste
m

LL: Rated container load

Inertial Loads

IMP: Vertical impact due to hoist

acceleration

LATT: Lateral due to trolley acceleration

LATG: Lateral due to gantry acceleration

Overload

COLL: Crane Collision

SNAG: Snagging headblock

STALL: Stalling hoist motors

Normally do not control

Environmental Loads

WLO: Wind load operating (In-Service)

WLS*: Wind load storm (Out-of-Service)

EQ: Earthquake load

*Often a major source of discrepancies

Wind Load, Storm

WLS: Out-of-Service Wind

Wind Force = $\sum A \times C_f \times q_z$

A = Area of crane element

C_f = Shape coefficient (including shielding) } From wind

From wind tunnel testing

 q_z = Dynamic pressure, function of:

Mean recurrence interval (MRI)

Gust duration

 $V_{\it ref}^{\it 2}$, where $V_{\it ref}$ is a location-specific, codespecified reference wind speed

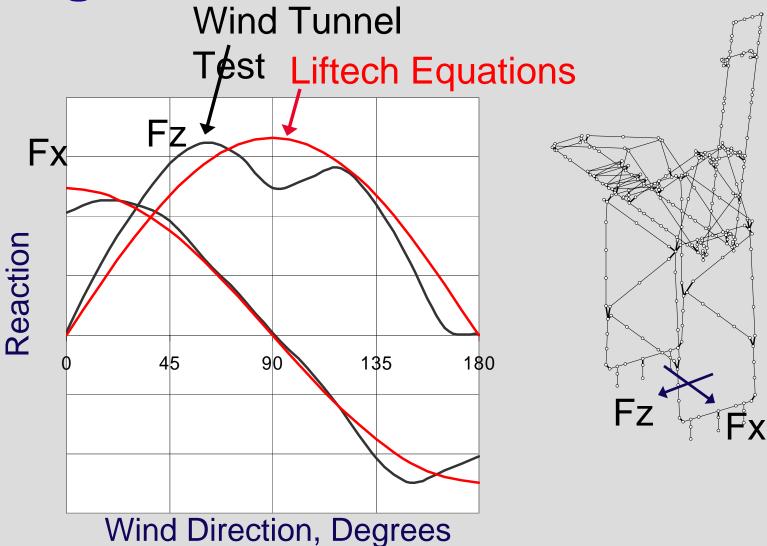
Exposure (surface roughness)

Need to clearly specify

Shape Coefficient, C_f


Empirical values: FEM, BSI, etc.

Wind tunnel tests are more accurate


Boundary layer

Angled wind effects

Shielding effects

Angled Wind

WLS: Out-of-Service Wind

Wind Force = $\sum A \times C_f \times q_z$

A = Area of element

C_f = Shape coefficient (including shielding) } From wind

From wind tunnel testing

 q_z = Dynamic pressure, function of:

Mean recurrence interval (MRI)

Gust duration

 V_{ref}^2 , where V_{ref} is a location-specific, codespecified reference wind speed

Exposure (surface roughness)

Need to clearly specify

Mean Recurrence Interval

Probability of Speed Being Exceeded

	Years in Operation					
MRI	1	10	25	50	100	
10 yrs	.10	.64	.93	.99	.99997	
25 yrs	.04	.34	.64	.87	.98	
50 yrs	.02	.18	.40	.64	.87	
100 yrs	.01	.10	.22	.39	.64	

Example:

Chance of 50-yr wind being exceeded in 25 years: 40%

WLS: Out-of-Service Wind

Wind Force = $\sum A \times C_f \times q_z$

A = Area of crane element

C_f = Shape coefficient (including shielding) } From wind

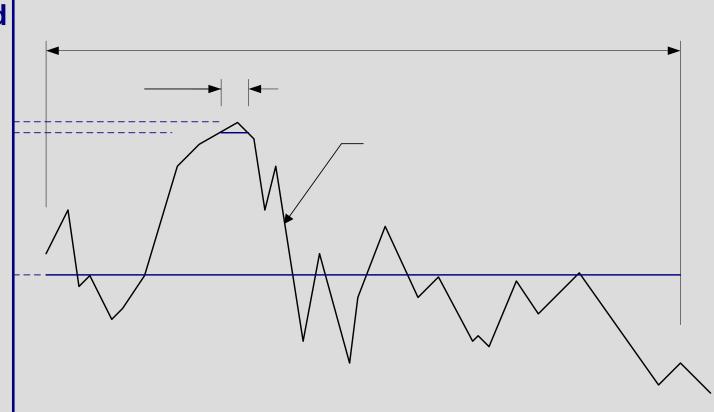
From wind tunnel testing

 q_z = Dynamic pressure, function of:

Mean recurrence interval (MRI)

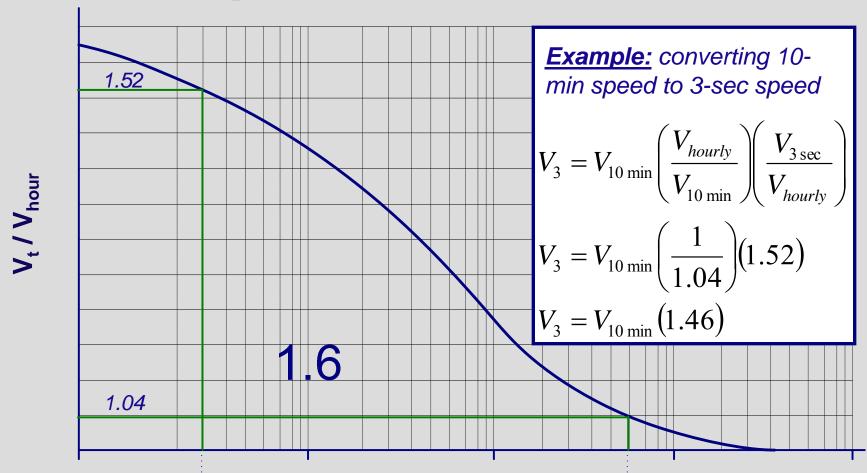
Gust duration

 $V_{\it ref}^{\it 2}$, where $V_{\it ref}$ is a location-specific, codespecified reference wind speed


Exposure (surface roughness)

Need to clearly specify

Gust Duration



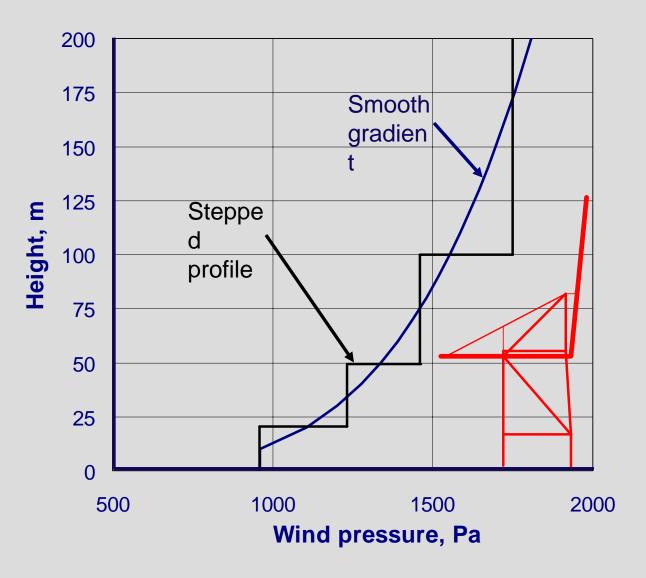
Time

Wind Speed vs. Gust Duration

Ratio of probable maximum speed averaged over "t" seconds to hourly mean speed.

Reference, ASCE 7-05.

Gust Duration (seconds)


Code Gust Durations

Code definitions of basic wind speed

Code	Gust Duration	MRI
EN 1991-1-	10 min	50 yrs
FEM 1.004	10 min	50 yrs
ASCE 7-02	3 sec	50 yrs
HK 2004	3 sec	50 yrs

Typical Pressure Profiles

Shape of profile depends on surrounding surface roughness

Variation in WLS

Variable	Variation	Effect on V	Effect on F *
MRI	25 to 50 yrs	7.5%	15.6%
Gust duration	3 sec to 10 min	46%	113%
Profile	Open terrain to ocean exposure	5-10%	10-20%

*See later slides for effect on calculated tie-down load!

Recommendations for Specifying WLS

Return Period

Use 50-yr MRI

Basic wind speed

Gust duration

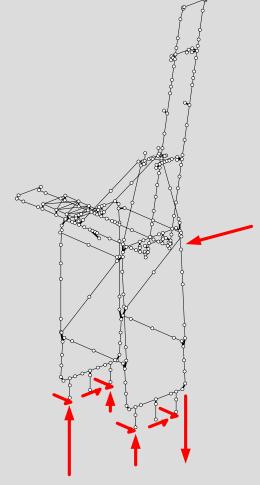
Profile

Other factors

Use local civil code

Shape coefficients Wind tunnel tests

Do not mix and match between codes for pressure and load factors!



Corner Reactions – Angled Wind

Do not use spreadsheet!

Use frame analysis program

Frame stiffness is significant to reactions

Load Combinations

Load Combinations

Load combinations

Operating

Overload

Storm wind (out-of-service)

Design approaches

Generally Allowable Stress Design (ASD)

Operating Condition Loads

DL: Crane weight*

LL: Rated container load

IMP & LAT: Inertial loads

WLO: Wind load, in service

*Excluding Rated Load

Out-of-Service & Overload

DL: Crane weight*

WLS: Wind load storm (out-of-service)

Overload Conditions (in and out-of-service)

*Including trolley and lift system

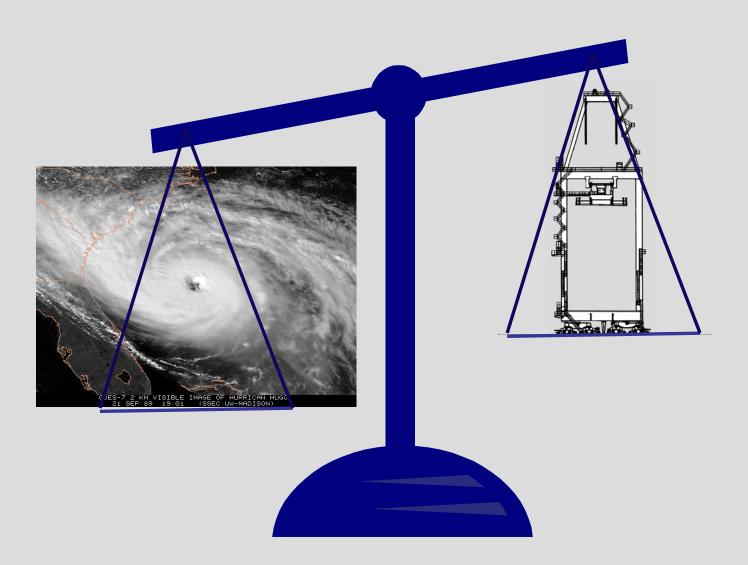
Recommendations

Requesting crane data

Ask for basic loads

Combine per ACI load factors

Requesting tenders

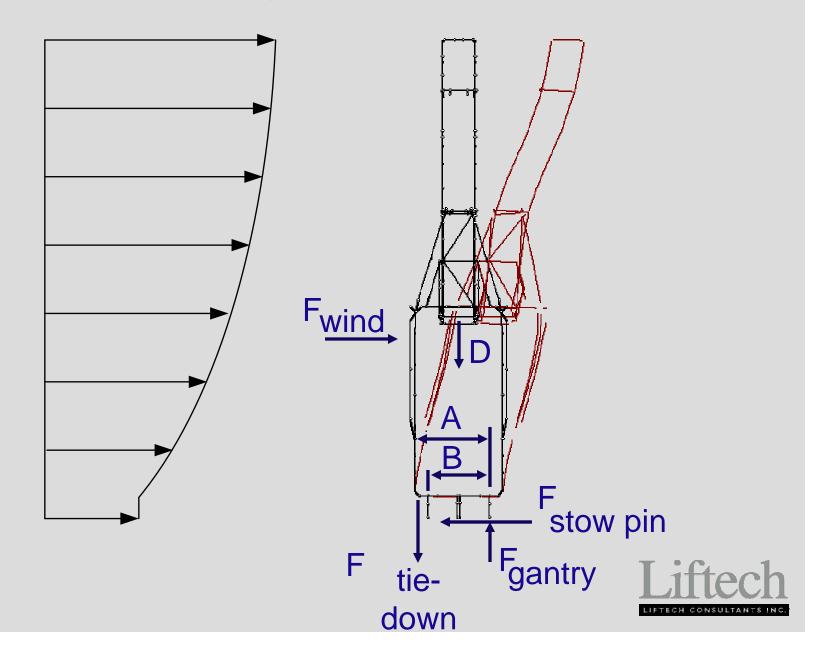

Provide factored load tables

Ask to fill in tables

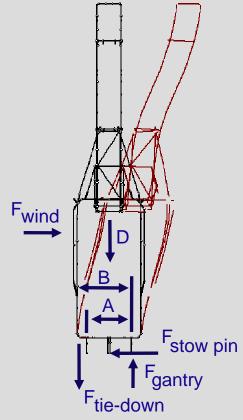
Specify allowable factored loads

Tie-down Loads

Tie-Down Failures

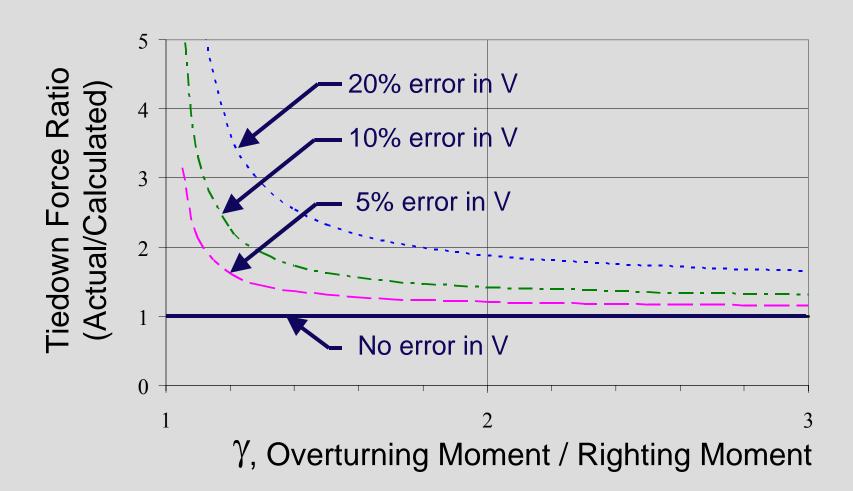

Crane Tie-downs

Wind Load & Crane Reactions

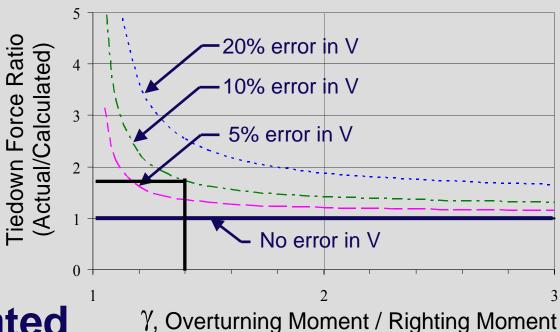

Error in Calculated Tie-down Force

Ratio of moments:

$$\gamma = \frac{F_{wind}h}{D\frac{B}{2}} = \frac{Overturning\ Moment}{Righting\ Moment}$$


force: error in wind force,

$$\frac{F_{Tiedown,Actual}}{F_{Tiedown,Calculated}} = \frac{\frac{1}{A} \left[(1+e)F_{Wind}h - D\frac{B}{2} \right]}{\frac{1}{A} \left[F_{Wind}h - D\frac{B}{2} \right]} = \frac{(1+e)\gamma - 1}{\gamma - 1}$$


Error in Tie-down Force

Example:

Error in wind speed = 10%; γ = 1.4 Error in wind pressure = 21%

Error in calculated tie-down force = 74%

Liftech

Stability Load Factors

Load		Factor	r
	BSI	ACI	FEM
Dead Load	1.0	0.9	1.0
TL + LS	1.0	0.9	1.0
Wind Load, 50-year MRI	1.2	1.3*	1.2

^{* 1.6} with ASCE 7-02 "directionality factor"

Uplift: Factored vs. Service

	Service	Factored
Load		Load Factor
Dead Load	-500	x 0.9 = -450
Wind Load	+450	x 1.3 = +585
Calculated Uplift	-50	+135
	"No Uplift"	"Uplift"

Recommended Tie-down Strength Requirements

Design using Factored Load

Turnbuckle B.S. = 1.6* x factored load

> Proof test to 100% of factored load

Structural components Allowable stress of 0.9 x F_{vield}

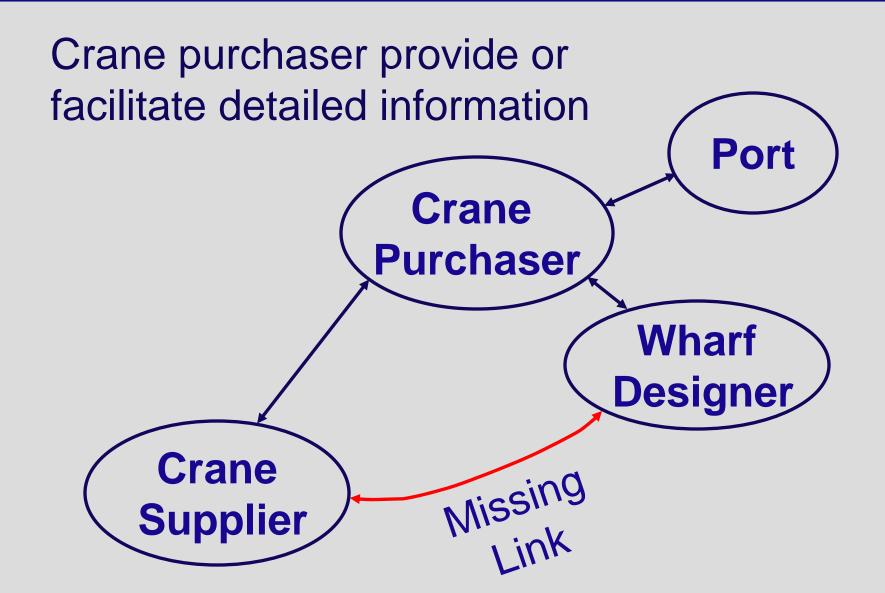
^{* 2.5} for off-the-shelf turnbuckles.

Putting the Two Together

Problem Overview

Crane supplier and wharf designer work with incomplete and inconsistent data

Crane supplier generally uses Service Load approach


Wharf designer generally uses Factored Load approach

Neither knows what basis the other uses

Solution

Obtain From Wharf Designer

Assumed wheel arrangement

Service or factored

Load factors

Load combinations for operating, overload, and out-of-service conditions

Complete wind criteria

Allowable wheel loads, kips/ft*

* Crane supplier tends to provide kips/wheel

Example Combination Table: Service Wheel Loads

Mode		Operating				Stowed
		WOP1	WOP2	WOP3	WOP4	WS1
Dead Load	DL	1.0	1.0	1.0	1.0	1.0
Trolley Load	TL	1.0	1.0	1.0	1.0	1.0
Lift System	LS	1.0	1.0		1.0	1.0
Lifted Load	LL	1.0	1.0		1.0	
Impact	IMP		0.5			
Gantry Lateral	LATG	1.0				
Op. Wind Load	WLO		1.0	1.0		
Stall Torque Load	STL			1.0		
Collision Load	COLL				1.0	
Storm Wind Load	WLS					1.0
Earthquake Load	EQ					
Allowable Wheel	LS	50 x S			70 x S	
Loads (tons/wheel)	WS	65 x S			90 x S	

S = Average spacing, in meters, between the wheels at each corner. <u>Example:</u>

S = 1.5 m, Allowable LS Operating = 50 t/m * 1.5 m = 75 t/wheel

Example Combination Table: Factored Wheel Loads

Mode		Operating				Stowed
		WOP1	WOP2	WOP3	WOP4	WS1
Dead Load	DL	1.2	1.2	1.0	1.0	1.2
Trolley Load	TL	1.2	1.2	1.0	1.0	1.2
Lift System	LS	1.2	1.2		1.0	1.2
Lifted Load	LL	1.6	1.6		1.0	
Impact	IMP		0.8			
Gantry Lateral	LATG	0.8				
Stall Torque Load	STL			1.0		
Collision Load	COLL				1.0	
Storm Wind Load	WLS					1.6
Earthquake Load	EQ					
Allowable Wheel	LS	60 x S			80 x S	
Loads (tons/wheel)	WS	75 x S			100 x S	

S = Average spacing, in meters, between the wheels at each corner. *Example:*

S = 1.5 m, Allowable WS Storm = 100 t/m * 1.5 m = 150 t/wheel

Ask Crane Supplier For

Wheel arrangement

Wheel loads for individual loads

Combined wheel loads for operating, overload, and out-of-service conditions

Complete wind criteria used and basis for shape factors

Individual and corner factored loads for tie-downs including direction of loading

Example Design Basic Load Table

Wharf Designer needs from Crane

Supplie

		Wheel Load			
		Seaside		Land	dside
		LHS	RHS	LHS	RHS
Dead load	boom down				
	boom up				
TL + LS	outreach				
	backreach				
	parked				
LL	outreach				
	backreach				
IMP	outreach				
	backreach				
LATT					
LATG	outreach				
	backreach				
OWLx					
OWLz					
OWL< (Ang	gled Max)				
Stall					
COLL	boom down				
	boom up				
EQx					
EQz					
SWLx					
SWLz					
SWL< (Ang	ded Max)				

Recap

Obtain detailed crane and wharf design data

Stick to one crane design code

Stick to one wharf design code

Use consistent design basis

Facilitate communication

Q&A

Crane Loads & Wharf Structure Design: Putting the Two Together

Thank you

This presentation will be available for download on Liftech's website:

www.liftech.net

Arun Bhimani, S.E.
President
Liftech Consultants Inc.
www.liftech.net

Erik Soderberg, S.E.
Principal
Liftech Consultants Inc.

Liftech Consultants Inc. file data:

N:\Papers & Presentations\!Working\AAPA 2006 \Crane_Loads_and_Wharf_Design_AAPA..ppt

Copyright 2006 by Liftech Consultants Inc. All rights reserved.

The information included in this presentation may not be altered, copied, or used without written authorization from Liftech Consultants Inc. Anyone making use of the information assumes all liability arising from such use.

Quality Assurance Review:

Author: Arun Bhimani

Editor: Erik Soderberg

Principal: Arun Bhimani

Liftech Consultants Inc. Presentation Source Documentation:

Source documents will be stored in: Presentation\Waiting to Archive\AAPA 2006\Crane_Loads

FYI - Much content originally came from the TOC 2005 Europe presentation.

