AAPA Facilities Engineering Seminar November 9,2007

Hans Cederqvist

Equipment for yard automation

Topics

- 1. Introduction & experience
- 2. Automation features
- 3. Crane mechanical design
- 4. Interfaces
- 5. Conclusion

Key facts about ABB

- Headquarters: Zurich, Switzerland
- About 108,000 employees in around 100 countries
- Orders in 2006: \$28.4 billion
- Revenues in 2006: \$24.4 billion
- Listed on Stockholm, Swiss & New York exchanges; traded on virt-x

	1883	Company ASEA was founded in Sweden
	1897	Delivery of first crane equipment
	1968	Delivery of first container crane with thyristor drives
ı	1979	ASEA concentrates on electrical equipment Divests mechanical part of manufacturing
5	1981	First sway control patents
:	1987	STS crane with AC drives, Electronic Load Control System
<u>.</u>	1997	Unmanned stacking cranes introduced (Singapore)
	2002	CTA, Hamburg in commercial operation
5	2005	Order for EUROMAX
	2007	Order for TPCT/Taiwan and Busan + PNC/Korea

ABB scope

Electrical & automation equipment to crane builder:

- System integration
- Drives & motors (hoist, trolley, gantry)
- Trafos & HV/LV switchgear
- E -house
- Process controllers & CMS
- Interface to TOS
- Sensors (LPS, TPS)
- Cameras
- etc

ABB Experience – auto RMGs in operation

Site	Project	Crane mfg	#	Н	W	Vehicles	Yard/rail	Comment
Singapore	PSA	NKK	15	8	12	T/C/A	Good	Cantilever
Singapore	PSA	Mitsui	24	8	10	T/C/A	Good	Cantilever
Tokyo	Wan Hai	TCM	8	6	12	T/C	Slope	Cantilever
Kaohsiung	Evergreen	Chin-Pan	6	5	11	T/C	Fair	Cantilever
Hamburg	CTA	Künz	52	4/5	10	T/C/A	Bad!	Front -end
			105					

T = External trucks , C = Internal chassis, A = AGVs

ABB Experience – auto RMGs on order

Site	Project	Crane mfg	#	Н	W	Vehicles	Yard/rail	Comment
Rotterdam	Euromax	ZPMC	58	5	10	T/C/A	Fair	Front-end
Taipei	TPCT	ZPMC	20	5	13	T/C	Fair	Cantilever
Busan	Hanjin	ZPMC	42	6	10	T/C	Fair	Cantilever
Busan	PNC	ZPMC	31	5	9	T/C	Fair	Cantilever
			151					

3B Automation Technologies AB, 2007 Pa

CTA – Hamburg - overview

CTA - Operating experience

- Commercial operation since March 2002
- Capacity today about 3 TEU/year
- QC productivity 25-30 mph
- LS truck service 20-25 min
- Peak around 2000 trucks / day

CTA – auto RMGs

- **Total ARMG operating hours > 1 500 000**
- Availability > 99%
- Container positioning and transport excellent
- "No" collisions involving automatic cranes
- > 15 000 000 moves
- 15- 20 000 moves/day for auto RMGs
- Gantry travel distance > 8000 miles/y (13 000 km/y)

EUROMAX, Rotterdam

<u>Owner</u>

Hutchison Port Holdings 100% Hong Kong (via ECT)

Capacity

Phase 1: 2 100 000 TEU/y Phase 1-4: 5 000 000 TEU/y

<u>Data</u>

Quay 1500 m Depth 17,5 m

© ABB Automation Technologies AB, 2007 DOC NO Rev. Approved

EUROMAX Rotterdam

- Scope phase I
 - 12 double trolley STS
 - 4 barge/feeder QC
 - 58 automatic RMGs
 - 2 rail RMGs
- Time-schedule:
 - **Delivery from fall 2006 2009**
 - Start commercial operation 2008/07
- Mechanical crane part by ZPMC, Shanghai
- All automation and electrical equipment from ABB

utomation Lechnologies AB, 2007 Pag Rev Approved

Site view 2007

© ABB Automation Technologies AB, 2007 DOC NO Rev. Approved

EMC - Kaohsiung

EMC - Kaohsiung – Auto RMGs

All moves within marked area are fully automatic

Dept.: K 2007-0

age: 15 Hans Cede

Topics

- 1. Introduction & experience
- 2. Automation features
- 3. Crane mechanical design
- 4. Interfaces
- 5. Conclusion

CTA - Container flow WS <-> LS

Automatic Stacking

Automatic RMG challenge

Problems to solve

- Automatic job order handling
- **Anti-collision between cranes**
- Path control for avoiding obstacles
- Efficient load control with centimeter accuracy
- Finding the target position with centimeter accuracy
- Handle ground/rail conditions
- Handle crane dynamics
- **Automatic landing**

Crane Dynamics – Crane Deflection

Only Trolley & Gantry absolute position

With TPS measurement relative the ground

If positioning is made based on gantry and trolley positions only,

- The result will be influenced by:
 - Rail position and slope
 - Trolley rail slope
 - Girder deflection
 - Gantry wheel position on rail
 - Trolley wheel position on rail
 - Structure deflection
 - Load center of gravity influence on rope system
 - Load oscillation

© ABB Automation Technologies AB, 2007 DOC NO Rev. Approved

© ABB Automation Technologies AB, 2007 Page: 21 DOC NO Rev. Approved

Automation system lay-out

Positioning System – Absolute Position

- Positioning system is important for automatic cranes
- Most critical for the anti-collision systems
- Very important for placing first container unless ground markers are used.

Gantry

- Optical system for calibration
- Encoder for precise positioning

ABB - Crane Sensor System

Load Position Sensor

- Developed by ABB crane organization
- More than 200 systems in operation
- In operation since 1988
- Target Position Sensor
 - Developed by ABB crane organization
 - More than 200 systems in operation
 - In operation since 1997

Load position control system (LPS)

Control of the load position and motion relative trolley position

- Sway control
- Positioning / Path control
- Skew control
- 4 "directions":
 - Trolley position
 - Gantry position
 - Hoist position
 - Skew angle

Target Position Sensor (TPS)

- Anti collision (stack, vehicles)
- Stack position measurement
- Stack profile scanning
- Vehicle position measurement (AGV/truck/chassis)

© ABB Automation Technologies AB, 2007 DOC NO Rev. Approved

Pick up – anticollision scan

Pick up – anticollision scan

2007-04-02

Pick up – fine alignment in gantry direction

Dept.: N 2007-0

ge: 28 Hans Cederqvist

torration reciriologies Ab, 2007 1 age.

Pick up – fine alignment in trolley direction Find position of top container

Set down – fine alignment in trolley direction Find position of top and bottom container

Set down – measure difference between reference and landed container

Set down – redo landing if necessary

Dept.: N 2007-04-0

age: 31 Hans Cederqvist

tomation Lechnologies AB, 2007

Rev. Approved

Solution for very demanding yard/rail conditions

- TPS
- Ground markers

Used to determine the position of the first container

Remote Control – Cameras On Crane

Fixed cameras on the trolley

SCANIA

nologies AB, 2007 Page: 33

2007-04-02

Hans Cederqvist

Remote Control

- Good, office style working environment
- Adjustable seat and control desk
- Remote operator can sit or stand

Topics

- 1. Introduction & experience
- 2. Automation features
- 3. Crane mechanical design
- 4. Interfaces
- 5. Conclusion

EUROMAX - ARMG (ZPMC)

rope tower rail gauge 32,3 m lifting height 18,1 m gantry 4,5 m/s trolley 1 m/s hoist 1,5 m/s

Dept.: K 2007-0

Hans Cederqvist

mation recrinologies Ab, 2007 Pro Rev. Approved

CTA - ARMG block (Künz, Austria)

Taiwan – auto CRMG (ZPMC and local crane mfg)

© ABB Automation Technologies AB, 2007 Page: 39 DOC NO Rev. Approved

US/Kone – reeving and micro-motion

Mechanical crane designs for automation

- Width 8 13 containers
- Height 4 8 " –
- Single beam & double beam
- Weight : 170 390 tons
- Hinged /fixed leg & fixed legs only
- Gantry wheels: 8 16
- Gantry speeds up to 1000 feet/min (5 m/s)
- Rope reeving : rope tower / straight ropes with sheaves
- Micro motion : hydraulic/electric/auxiliary ropes
- Front / side loading

Topics

- 1. Introduction & experience
- 2. Automation features
- 3. Crane mechanical design
- 4. Interfaces
- 5. Conclusion

Stacking

- Stacks are built to a vertical reference
- Container position should be checked after each landing. Effects of leaning ground to be handled.
- Minimum distance between the stacks is affected by:
 - Accuracy of the first container placement
 - Size of cameras and guides on spreader

Automatic stacking better than manual.

Staggered stacking

Yard slope up to about 1,0 %

Ground conditions - the rail challenge

Test track in CTA for performance test!

Yard Preparation – CTA experiences

- Due to land-fill in the yard difficult soil conditions were expected
 - Simple and adjustable rail + sleeper design employed
 - Much larger tolerances than typical in "land moving" direction specified (5 – 10X)
 - The RMGs were tested on rails prepared with max specified geometry
 - Worst conditions due to that the two RMGs operate on different rail tracks (span 31 & 40,1 m)
 - Specified function made possible by forgiving RMG design
 - No piling required!

Yard Preparation – Test in CTA 2002

Rails located at maximum allowable tolerances for testing purposes

Designations according to VDI 3576

E

Technical Data – Rail Tolerances

	CTA - Tolerances	VDI 3567
Track gauge centre	A = +/- (5+0,25 * (s-15) mm	(3+0,25 * (s-15) mm
Position of rail in ground plan	B = +/- 10 mm b = 1 mm	+/- 5 mm
Height of the rail (axial slope)	C = +/- 100 mm c = 50 mm	+/-10 mm c = 2 mm
Height of the rail to each other (lateral slope)	Dmax = +/- 100 mm	+/-10 mm
Inclination of the rails to each other (converging)	E = +/- 1%	0,5%

CTA, Hamburg – Truck interface

CTA, Hamburg – AGV interface

© ABB Automation Technologies AB, 2007 DOC NO Rev. Approved

EMC - Kaohsiung

Transfer Zone (TZ)

2007-04-02

Hans Cederqvist

Page: 51

© ABB Automation Technologies AB, 2007 DOC NO Rev. Approved

Interface to vehicles

- AGVs fully automatic
- **Shuttle carriers fully automatic**
- Internal tractors/chassis fully automatic with supervision
- Road trucks manual set-down/pick-up via cameras

Positioning requirements:

Front - loading

Within lane

Side - loading

+/- 200 mm for min cycle time

TLC <-> automatic RMG

- Work order received by the crane
- Crane automatically moves to the target destination
- After work order is completed a job performed message is sent
- Block modification message
- Status message triggered on predefined events

Task division TLC/RMG

	TLC	RMG
Decide container location in stack	X	
Issue work-order	X	
Confirm work-order		X
Calculate optimal path		X
Control crane movements		X
Confirm stack profile		X
Confirm storage conditions		X
Crane-crane optimization	X	
Crane-crane collision avoidance		X
Confirm container location		X
Report work-order finalized		X
Up-date block map	X	X
Request manual intervention		X

Topics

- Introduction & experience
- 2. Automation features
- 3. Crane mechanical design
- Interfaces
- 5. Conclusion

- Precise positioning systems
- -> to minimize cycle time

- Precise positioning systems
- -> to minimize cycle time
- Possibility to accommodate for changing geometry
- -> to work with the forces of nature

Dept.: K

, 2007 Page: 58 Ha

- **Precise positioning systems**
- -> to minimize cycle time
- Possibility to accommodate for changing geometry
- -> to work with the forces of nature
- Mechanically robust
- > to allow operation in high winds

- Precise positioning systems
- -> to minimize cycle time
- Possibility to accommodate for changing geometry
- -> to work with the forces of nature
- **Mechanically robust**
- > to allow operation in high winds
- **High quality**
- -> to facilitate a high availability

- **Proper installation**
- > no unexpected disturbances

- Proper installation
- > no unexpected disturbances
- Efficient Crane Management System (CMS)
- > no driver on the crane

Dept.: K

007 Page: 62 Han

- Proper installation
- > no unexpected disturbances
- Efficient Crane Management System (CMS)
- > no driver on the crane
- Possibility to handle work orders from TOS/TLC
- > to ensure a high productivity

- **Proper installation**
- > no unexpected disturbances
- **Efficient Crane Management System (CMS)**
- > no driver on the crane
- Possibility to handle work orders from TOS/TLC
- > to ensure a high productivity
- Proper camera surveillance system
- -> to minimize time for manual operation

Conclusion

- Automated crane designs exist that can fit basically any type of terminal (lay-out, operational mode, etc)
- The challenge is the systematic approach required (planning, exception handling etc)
- The cooperation auto RMG and TLC/TOS is vital
- The automation concept must be able to handle unexpected conditions, rails, yard, wheather etc

Power and productivity for a better world[™]