AAPA
Facilities Engineering Seminar
November 9, 2007
Hans Cederqvist

Equipment for yard automation
Topics

1. Introduction & experience
2. Automation features
3. Crane mechanical design
4. Interfaces
5. Conclusion
Key facts about ABB

- Headquarters: Zurich, Switzerland
- About 108,000 employees in around 100 countries
- Orders in 2006: $28.4 billion
- Revenues in 2006: $24.4 billion
- Listed on Stockholm, Swiss & New York exchanges; traded on virt-x
ABB Crane Systems – A brief history

1883 Company ASEA was founded in Sweden
1897 Delivery of first crane equipment
1968 Delivery of first container crane with thyristor drives
1979 ASEA concentrates on electrical equipment
 Divests mechanical part of manufacturing
1981 First sway control patents
1987 STS crane with AC drives, Electronic Load Control System
1997 Unmanned stacking cranes introduced (Singapore)
2002 CTA, Hamburg in commercial operation
2005 Order for EUROMAX
2007 Order for TPCT/Taiwan and Busan + PNC/Korea
ABB scope

Electrical & automation equipment to crane builder:

- System integration
- Drives & motors (hoist, trolley, gantry)
- Trafos & HV/LV – switchgear
- E-house
- Process controllers & CMS
- Interface to TOS
- Sensors (LPS, TPS)
- Cameras
- etc
ABB Experience – auto RMGs in operation

<table>
<thead>
<tr>
<th>Site</th>
<th>Project</th>
<th>Crane mfg</th>
<th>#</th>
<th>H</th>
<th>W</th>
<th>Vehicles</th>
<th>Yard/rail</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singapore</td>
<td>PSA</td>
<td>NKK</td>
<td>15</td>
<td>8</td>
<td>12</td>
<td>T/C/A</td>
<td>Good</td>
<td>Cantilever</td>
</tr>
<tr>
<td>Singapore</td>
<td>PSA</td>
<td>Mitsui</td>
<td>24</td>
<td>8</td>
<td>10</td>
<td>T/C/A</td>
<td>Good</td>
<td>Cantilever</td>
</tr>
<tr>
<td>Tokyo</td>
<td>Wan Hai</td>
<td>TCM</td>
<td>8</td>
<td>6</td>
<td>12</td>
<td>T/C</td>
<td>Slope</td>
<td>Cantilever</td>
</tr>
<tr>
<td>Kaohsiung</td>
<td>Evergreen</td>
<td>Chin-Pan</td>
<td>6</td>
<td>5</td>
<td>11</td>
<td>T/C</td>
<td>Fair</td>
<td>Cantilever</td>
</tr>
<tr>
<td>Hamburg</td>
<td>CTA</td>
<td>Künz</td>
<td>52</td>
<td>4/5</td>
<td>10</td>
<td>T/C/A</td>
<td>Bad!</td>
<td>Front-end</td>
</tr>
</tbody>
</table>

105

T = External trucks, C = Internal chassis, A = AGVs
ABB Experience – auto RMGs on order

<table>
<thead>
<tr>
<th>Site</th>
<th>Project</th>
<th>Crane mfg</th>
<th>#</th>
<th>H</th>
<th>W</th>
<th>Vehicles</th>
<th>Yard/rail</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotterdam</td>
<td>Euromax</td>
<td>ZPMC</td>
<td>58</td>
<td>5</td>
<td>10</td>
<td>T/C/A</td>
<td>Fair</td>
<td>Front-end</td>
</tr>
<tr>
<td>Taipei</td>
<td>TPCT</td>
<td>ZPMC</td>
<td>20</td>
<td>5</td>
<td>13</td>
<td>T/C</td>
<td>Fair</td>
<td>Cantilever</td>
</tr>
<tr>
<td>Busan</td>
<td>Hanjin</td>
<td>ZPMC</td>
<td>42</td>
<td>6</td>
<td>10</td>
<td>T/C</td>
<td>Fair</td>
<td>Cantilever</td>
</tr>
<tr>
<td>Busan</td>
<td>PNC</td>
<td>ZPMC</td>
<td>31</td>
<td>5</td>
<td>9</td>
<td>T/C</td>
<td>Fair</td>
<td>Cantilever</td>
</tr>
</tbody>
</table>

151
CTA – Hamburg - overview

52 auto RMG - 10 wide - 1 over 4/5
CTA - Operating experience

- Commercial operation since March 2002
- Capacity today about 3 TEU/year
- QC productivity 25-30 mph
- LS truck service 20-25 min
- Peak around 2000 trucks / day
CTA – auto RMGs

- Total ARMG operating hours > 1 500 000
- Availability > 99%
- Container positioning and transport excellent
- “No” collisions involving automatic cranes
- > 15 000 000 moves
- 15-20 000 moves/day for auto RMGs
- Gantry travel distance > 8000 miles/y (13 000 km/y)
EUROMAX, Rotterdam

Owner
Hutchison Port Holdings 100%
Hong Kong
(via ECT)

Capacity
Phase 1: 2 100 000 TEU/y
Phase 1-4: 5 000 000 TEU/y

Data
Quay 1500 m
Depth 17,5 m
EUROMAX Rotterdam

- Scope phase I
 - 12 double trolley STS
 - 4 barge/feeder QC
 - 58 automatic RMGs
 - 2 rail RMGs
- Time-schedule:
 - Delivery from fall 2006 – 2009
 - Start commercial operation 2008/07
- Mechanical crane part by ZPMC, Shanghai
- All automation and electrical equipment from ABB
Site view 2007
EMC - Kaohsiung
EMC - Kaohsiung – Auto RMGs

All moves within marked area are fully automatic
Topics

1. Introduction & experience
2. Automation features
3. Crane mechanical design
4. Interfaces
5. Conclusion
CTA – Container flow WS <-> LS

- Fully automatic operation
- Stack 37x10x4-5
- Interface controlled via manual remote
- Fully automatic interface
- Auto RMGs on separate tracks
Automatic Stacking

Trolley direction, skew included

- Max +/- 100 mm absolute dev
- Max 50 mm to underlying
- Stack reference point, absolute

Gantry direction

- Max +/- 100 mm absolute dev
- Max 40 mm to underlying
- Stack reference point, absolute
Automatic RMG challenge

Problems to solve

- Automatic job order handling
- Anti-collision between cranes
- Path control for avoiding obstacles
- Efficient load control with centimeter accuracy
- Finding the target position with centimeter accuracy
- Handle ground/rail conditions
- Handle crane dynamics
- Automatic landing
Crane Dynamics – Crane Deflection

If positioning is made based on gantry and trolley positions only,

- The result will be influenced by:
 - Rail position and slope
 - Trolley rail slope
 - Girder deflection
 - Gantry wheel position on rail
 - Trolley wheel position on rail
 - Structure deflection
 - Load center of gravity influence on rope system
 - Load oscillation
Automation system lay-out
Positioning System – Absolute Position

- Positioning system is important for automatic cranes
- Most critical for the anti-collision systems
- Very important for placing first container unless ground markers are used.

Gantry
- Optical system for calibration
- Encoder for precise positioning

Trolley
- Reading head
- Magnets
- Measuring wheel
ABB - Crane Sensor System

- **Load Position Sensor**
 - Developed by ABB crane organization
 - More than 200 systems in operation
 - In operation since 1988

- **Target Position Sensor**
 - Developed by ABB crane organization
 - More than 200 systems in operation
 - In operation since 1997
Control of the load position and motion relative to trolley position

- Sway control
- Positioning / Path control
- Skew control
- 4 "directions":
 - Trolley position
 - Gantry position
 - Hoist position
 - Skew angle
Target Position Sensor (TPS)

- Anti collision (stack, vehicles)
- Stack position measurement
- Stack profile scanning
- Vehicle position measurement (AGV/truck/chassis)
TPS job order

Pick up – anticollision scan

TPS2
TPS1
TPS job order

Pick up – anticollision scan
TPS job order

Pick up – fine alignment in gantry direction
TPS job order

Pick up – fine alignment in trolley direction

Find position of top container
TPS job order

Set down – fine alignment in trolley direction
Find position of top and bottom container
TPS job order

Set down – measure difference between reference and landed container

Set down – redo landing if necessary
Solution for very demanding yard/rail conditions

- TPS
- Ground markers

Used to determine the position of the first container
Remote Control – Cameras On Crane

Fixed cameras on the trolley

Four fixed cameras on the spreader
Remote Control

- Good, office style working environment
- Adjustable seat and control desk
- Remote operator can sit or stand
Topics

1. Introduction & experience
2. Automation features
3. Crane mechanical design
4. Interfaces
5. Conclusion
EUROMAX - ARMG (ZPMC)

Rope tower
Rail gauge 32.3 m
Lifting height 18.1 m

Gantry 4.5 m/s
Trolley 1 m/s
Hoist 1.5 m/s
CTA - ARMG block (Künz, Austria)
Taiwan – auto CRMG (ZPMC and local crane mfg)
US/Kone – reeving and micro-motion

Rope Schemes

- Hoist Machinery
- Auxiliary Winches
- Pulleys of the Head Block
- Load Cells

Trimming by independently controllable main hoist winches
Mechanical crane designs for automation

- Width 8 – 13 containers
- Height 4 – 8
- Single beam & double – beam
- Weight : 170 – 390 tons
- Hinged /fixed leg & fixed legs only
- Gantry wheels : 8 - 16
- Gantry speeds up to 1000 feet/min (5 m/s)
- Rope reeving : rope tower / straight ropes with sheaves
- Micro – motion : hydraulic/electric/auxiliary ropes
- Front / side loading
Topics

1. Introduction & experience
2. Automation features
3. Crane mechanical design
4. Interfaces
5. Conclusion
Stacking

- Stacks are built to a vertical reference
- Container position should be checked after each landing. Effects of leaning ground to be handled.
- Minimum distance between the stacks is affected by:
 - Accuracy of the first container placement
 - Size of cameras and guides on spreader

Typical distance between stacks is 14-18”.
(350 – 450 mm) – trade off with cycle time.

Automatic stacking better than manual.
Staggered stacking

Yard slope up to about 1,0 %

400 mm yard slope!
Ground conditions - the rail challenge

Test track in CTA for performance test!
Yard Preparation – CTA experiences

- Due to land-fill in the yard difficult soil conditions were expected
 - Simple and adjustable rail + sleeper design employed
 - Much larger tolerances than typical in “land moving” direction specified (5 – 10X)
- The RMGs were tested on rails prepared with max specified geometry
- Worst conditions due to that the two RMGs operate on different rail tracks (span 31 & 40,1 m)
- Specified function made possible by forgiving RMG design
- No piling required!
Yard Preparation – Test in CTA 2002

Rails located at maximum allowable tolerances for testing purposes

Designations according to VDI 3576
Technical Data – Rail Tolerances

<table>
<thead>
<tr>
<th></th>
<th>CTA - Tolerances</th>
<th>VDI 3567</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track gauge centre</td>
<td>$A = +/-(5+0,25 \times (s-15)) \text{ mm}$</td>
<td>$(3+0,25 \times (s-15)) \text{ mm}$</td>
</tr>
<tr>
<td>Position of rail in ground plan</td>
<td>$B = +/- 10 \text{ mm} \quad b = 1 \text{ mm}$</td>
<td>+/- 5 mm</td>
</tr>
<tr>
<td>Height of the rail (axial slope)</td>
<td>$C = +/- 100 \text{ mm} \quad c = 50 \text{ mm}$</td>
<td>+/-10 mm \quad c = 2 mm</td>
</tr>
<tr>
<td>Height of the rail to each other (lateral slope)</td>
<td>$D_{\text{max}} = +/- 100 \text{ mm}$</td>
<td>+/-10 mm</td>
</tr>
<tr>
<td>Inclination of the rails to each other (converging)</td>
<td>$E = +/- 1%$</td>
<td>0,5%</td>
</tr>
</tbody>
</table>
CTA, Hamburg – Truck interface
Transfer Zone (TZ)
Interface to vehicles

- AGVs – fully automatic
- Shuttle carriers – fully automatic
- Internal tractors/chassis – fully automatic with supervision
- Road trucks – manual set-down/pick-up via cameras

Positioning requirements:

Front - loading
- Within lane

Side – loading
- +/- 200 mm for min cycle time
Communication
Work order received by the crane

Crane automatically moves to the target destination

After work order is completed a job performed message is sent

Block modification message

Status message triggered on predefined events
Task division TLC/RMG

- Decide container location in stack X
- Issue work-order X
- Confirm work-order X
- Calculate optimal path X
- Control crane movements X
- Confirm stack profile X
- Confirm storage conditions X
- Crane-crane optimization X
- Crane-crane collision avoidance X
- Confirm container location X
- Report work-order finalized X
- Up-date block map X X
- Request manual intervention X
Topics

1. Introduction & experience
2. Automation features
3. Crane mechanical design
4. Interfaces
5. Conclusion
Requirements on crane design I

- Precise positioning systems

-> to minimize cycle time
Requirements on crane design I

- Precise positioning systems
 -> to minimize cycle time
- Possibility to accommodate for changing geometry
 -> to work with the forces of nature
Requirements on crane design I

- Precise positioning systems
 -> to minimize cycle time
- Possibility to accommodate for changing geometry
 -> to work with the forces of nature
- Mechanically robust
 -> to allow operation in high winds
Requirements on crane design I

- Precise positioning systems
 - to minimize cycle time
- Possibility to accommodate for changing geometry
 - to work with the forces of nature
- Mechanically robust
 - to allow operation in high winds
- High quality
 - to facilitate a high availability
Requirements on crane design II

- Proper installation
 - > no unexpected disturbances
Requirements on crane design II

- Proper installation
 - > no unexpected disturbances

- Efficient Crane Management System (CMS)
 - > no driver on the crane
Requirements on crane design II

- Proper installation
 - no unexpected disturbances
- Efficient Crane Management System (CMS)
 - no driver on the crane
- Possibility to handle work orders from TOS/TLC
 - to ensure a high productivity
Requirements on crane design II

- Proper installation
 - no unexpected disturbances
- Efficient Crane Management System (CMS)
 - no driver on the crane
- Possibility to handle work orders from TOS/TLC
 - to ensure a high productivity
- Proper camera surveillance system
 - to minimize time for manual operation
Conclusion

- Automated crane designs exist that can fit basically any type of terminal (lay-out, operational mode, etc).
- The challenge is the systematic approach required (planning, exception handling etc).
- The cooperation auto RMG and TLC/TOS is vital.
- The automation concept must be able to handle unexpected conditions, rails, yard, weather etc.
Power and productivity for a better world™