AAPA

Port Operations/Safety and Information Technology Seminar

4/24/-27, 2007 – Jacksonville, FL

Innovation in Port Efficiency:

"Processes, Simulations and Modeling for better Terminal Operations, Planning & Congestion Mitigation"

Udo Mehlberg – Port of Tacoma

Terminal Operations and Capacity Simulations

Simulation Projects

- 1994 First simulation project
 - Intermodal Yard NIM & SIM throughput Capacity
 - Port Intermodal Infrastructure Planning
 - Used consultant for project
- 2004 Acquired simulation software from ISL

(ISL = Institute of Shipping Economics and Logistics)

- SCUSY Simulation of Container Unit Handling systems
- CAPS Capacity Planning System
- 2005 Joint development with ISL
 - IYCAPS Intermodal Yard Capacity Planning System

Yard Space Utilization

Crane Requirements – Utilization

Berthing Times

Intermodal Yard Capacity Planning System

IYCAPS

Problem:

Given a demand forecast and a conceptual IY layout, what are the efficiencies and bottlenecks for the proposed facility?

No Programming is required in order to run a Simulation and achieve Results

IYCAPS Data Requirements

- REU Types
- Train Types
- Processes
- Tracks
- Track Connections
- Productivity
- Options Measurement (meter/feet)
- Input Distributions annual, monthly, daily, hourly throughput, train types

- Unknown types of cars per Train
- Three types of cars with varying length of each car
- Train length determined by adding up car length on per train basis at time of load planning
- While number of TEUs per train may be constant, train length varies greatly

Number of Configurations by Car Type

Type of Car	Number of Cars	Number of Types handled in 2006	Number of Car Configurations
Flat Car "P"	11,841	16	21
Spine Car "Q"	13,189	6	13
Stack Car "S"	50,940	38	43

 Create new unit which allows train length determination based on the number of TEU shipped:

R E U
Rail Equivalent Unit

- Establish total number of cars by type
- Establish total length of cars by type
- Establish total number of wells by type
- Establish average number of wells per car by type
- Establish average length of well per car by type
- Establish number of TEU per well by type of car
- Name this unit REU

- Determine distribution of car types arriving/departing from intermodal yard
- Apply number of TEU shipped per train and let the system determine the train length

REU Determination

Type of Car *	No Cars	% of Total	Total length Feet	Avg. Car Length	Total No of REU	Avg. No REU/ Car	Avg. REU length	No TEU per REU	Total No of TEU
Р	11,067	13.8	1,052,924	95.1	21,232	1.92	46.6	2	42,464
Q	17,283	21.7	3,298,030	190.8	56,116	3.25	58.8	2	112,232
S	51,447	64.5	10,079,286	195.9	146,814	2.85	68,7	4	587,256
Total	79,797	100	14,430,240		224,162				741,952

^{*}Car Type Data and No of Cars from UMLER file of 2/1/2007

Stack Cars – single well on one platform

Spine Car

Average REU length = 58.7 Ft Average TEU per REU = 2

Flat Car Types

Average REU Length = 47 Ft Average TEU per REU = 2

- Productivity Analysis
 - Equipment type and number
 - Shifts
 - Safety rules for adjacent working tracks

- Throughput
 - Evaluation of container moves per train type
- Train Schedule
 - List of all train arrivals with among others arrival and departure time, train length and container movements. Using the multiple runs function the last train schedule is listed
- Train schedule Parameters
 - Shows the seasonal arrival distribution and weekly peak times

- Train type evaluation
 - Overview of the time stamps a train passes through during its stay in the intermodal yard
- Track evaluation
 - Overview of the throughput, utilization and performance of operations regarding tracks
- Track utilization
 - Graphic evaluation of the track utilization over a one year period

Time Stamps of a Train's Stay in the Intermodal Yard

Track Utilization over a one Year Period

- Simultaneous utilization of tracks
 - Track allocation regarding their proportional availability for the trains
- Connection Point evaluation
 - Information about bottlenecks in regards to track allocation
- Train Dwell/Delay
 - Graphic evaluation of the length of stay for each train type

Simultaneously used Tacks

Average Hours in IY

- Productivity Analysis
 - Equipment type and number
 - Shifts
 - Safety rules for adjacent working tracks

IYCAPS is an evaluation tool. It will not give you the answer if you have no clue what you are doing.

For further information about IYCAPS please contact:

Email: IYCAPS@ISL.ORG

Phone: 0049 / 471 / 30 98 38 - 0

Fax: 0049 / 471 / 30 98 38 - 55

www.isl.org

Thank You

May I answer any questions?