

Regulatory and Engineering Approaches to Stopping Ballast Water Invasive Species

Mario Tamburri Maritime Environmental Resource Center

Chesapeake Biological Laboratory University of Maryland Center for Environmental Science

Regulatory and Engineering Approaches to Stopping Ballast Water Invasive Species

- Ship Ballast Water
- Changing Regulatory Environment
- Ballast Water Treatments
- Conclusions
- Maritime Environmental Resource Center

Ship Ballast Water

- Adjust trim and draft
- Rates 100 12,000 m³/hr
- Volumes 10,000 100,000 m³
- System capacity depends on rate of draft or trim adjustment
- Tankers and Containerships required rate depends on cargo loading/unloading times, min/ max drafts and equipment tolerances
- Total Capacity of tanker ballast pumps typically sufficient to fill/discharge in 15 hours
- Common practice (except tankers) loaded with full cargo to carry no ballast

Typical Ballast System

Ballast Water Regulations Timeline

Current Ballast Water Regulations

- US (and others) have mandatory exchange
- Interim solution with limitations

- Michigan Treatment based
- Washington Percent reduction and treatment based

Future Ballast Water Regulations

- California (2009)
- Minnesota and Wisconsin (pending)
- US House Bill 2830
- USCG and EPA standards/regulations
- IMO Convention (D2 Standards and G8 & G9 Guidelines)

Range of Discharge Standards

Organism Size Class	IMO	California	Washington
Organisms greater than 50 μm in minimum dimension	< 10 viable organisms / m ³	No detectable living organisms	Technology to inactivate or
Organisms 10 – 50 µm in minimum dimension	< 10 viable organisms / ml	< 0.01 living organisms / ml	remove: 95% zooplankton
Organisms less than 10 μm in minimum dimension		< 10 ³ bacteria/100 ml < 10 ⁴ viruses/100 ml	99% bacteria and phytoplankton
Escherichia coli	< 250 cfu/100 ml	< 126 cfu/100 ml	
Intestinal <i>enterococci</i>	< 100 cfu/100 ml	< 33 cfu/100 ml	
Toxicogenic <i>Vibrio cholera</i> e (01 & 0139)	< 1 cfu/100 ml or < 1 cfu/gram wet weight zooplankton samples	< 1 cfu/100 ml or < 1 cfu/gram wet weight zoological samples	

Ballast Water Treatments

- Shore-based
- Shipboard
 - **o** Effective at killing/removing invaders
 - $_{\rm O}$ Safe for ship crew
 - Environmentally benign
 - Feasible and affordable

Shipboard Ballast Water Treatments

- Mechanical
 - Filtration
 - Hydrocyclone
- Chemical (Biocides)

Oxidizing - chlorine, chlorine dioxide, ozone,
bromine, hydrogen peroxide, peroxyacetic acid
Non-oxidizing – gluteraldehyde, menadione, acrolein

- Physical
 - o Cavitation
 - Deoxygenation
 - Flocculation
 - Heat
 - Ultrasound
 - Ultraviolet Radiation
- Several Combinations

Recent Reviews

- Lloyd's Register (June 2007)
- California State Land Commission (Dec 2007)
 - 28 Treatment Systems (9 countries)
 - 17 combination of 2 or more
 - 21 chemical (18 oxidizing, 3 non-oxidizing)
 - $_{\rm o}$ 10 have been tested onboard active vessels

Status of Ballast Water Treatments

- IMO Certified:
- NEI (USA) Venturi Oxygen Stripping (VOS), deoxygenation
- Nearing Certification:
- Alfa Laval (Sweden) PureBallast, filtration + advanced oxidation
- Hamann (Germany) SEDNA, hydrocyclone + filtration + Peraclean

NEI Venturi Oxygen Stripping

- Utilizes inert gas to deoxygenate ballast water
- No flow-rate restrictions
- IMO compliant testing and meets D2 Standards
- Certification by Liberian Register, with technical review by ABS
- Significantly reduced tank corrosion

Status of Ballast Water Treatments

Other Promising Treatments:

- Ecochlor, chlorine dioxide
- **o** Greenship, hydrocyclone + electrochlorination
- Hitachi, filtration + flocculation
- Hyde Marine, filtration + UV
- Japan Assoc. Of Marine Safety, Special Pipe mechanical treatment + ozone
- MSI and Dow, filtration + UV or chemical
- Nutech 03, ozone
- \circ OceanSaver, filtration + N₂ saturation + cavitation
- OptiMar, hydrocyclone + UV
- Resource Ballast Technologies, cavitation + ozone + sodium hypochlorite
- RWO, filtration + advanced electrolysis
- Severn Trent DeNora, filtration + sodium hypochlorite
- Techcross, electrochemical oxidation

A Few Thoughts

- Technologies are available to meeting IMO Regulations.
- Multiple regulations and standards greatly complicate the issue.
- Treatment testing is challenging and some standards are currently beyond measure.
- Compliance monitoring and enforcement remains unclear.
- Regulations/treatments will reduce invasions but ballast water is not the only source.

Maritime Environmental Resource Center A Maryland Ballast Water Initiative

www.maritime-enviro.org

- Provide facilities and expertise for testing of treatment systems
- Provide information and decision tools to select the most appropriate treatment options
- Remove as much uncertainty as possible from emerging markets to accelerate the adoption of treatment technologies
- Initial focus on ballast water but will address various maritime environmental issues

