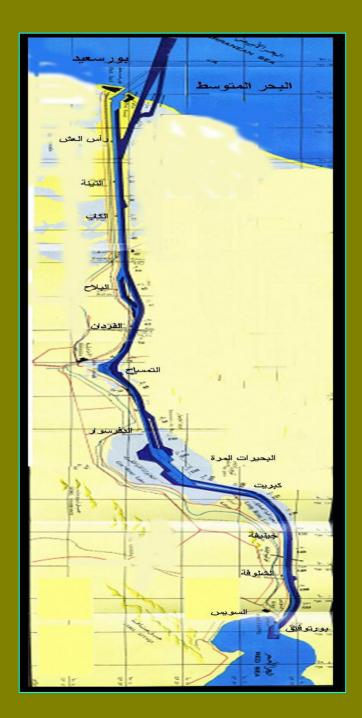
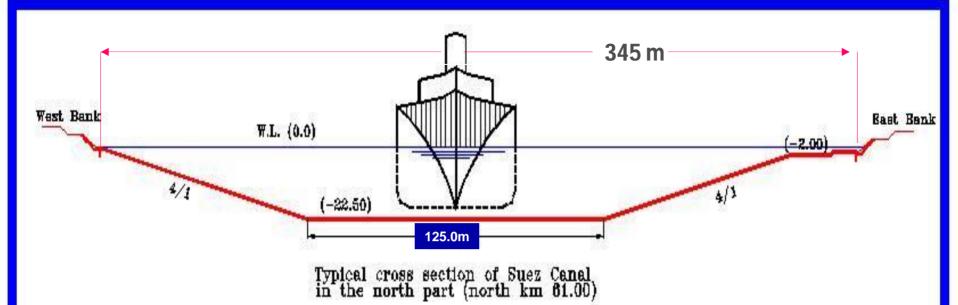


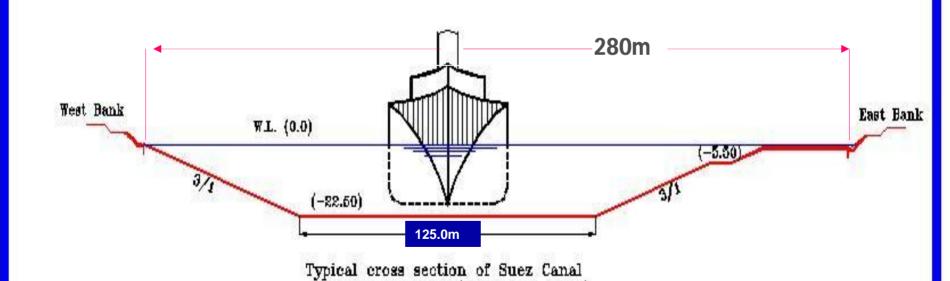
The Future of the Suez Canal

Shifting International Trade Routes Tampa, January 15-16, 2009


Ezzat M. El Sadek, Ph.D.
Board Member
Suez Canal Authority

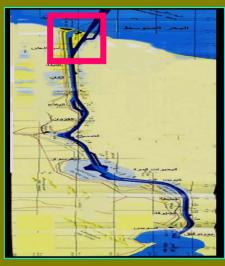
The Suez Canal links the Mediterranean Sea to the Red Sea.


It was opened for international navigation on 17 th November 1869.


Map of The Suez Canal

The Characteristics of the Suez Canal (1869 – 2008)

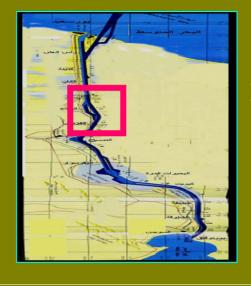
Description	1869	2008		
Overall Length	km	164	190.25	
Doubled Parts	km	0	78	
Depth	m	7.5	22.5 - 24	
Cross Sectional Area	m2	304	5000 - 5200	
Max. Draft	feet	22	62	
Max. tonnage	10 ³ tons	5	220	



in the south part (south km 61.00)

Double parts of the Canal

Port Said by-bass



1

It's Length 36.5 KM

Acc. In 1980

Ballah by-bass

2

It's Length 9 KM

Acc. In 1955

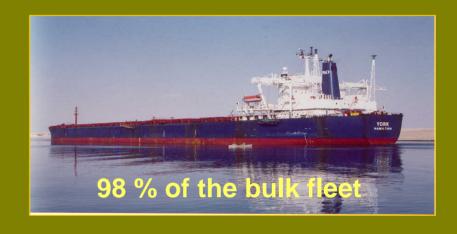
Temsah by-pass

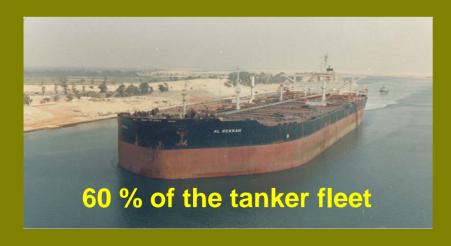
3

It's Length 5 KM

Acc. In 1980

Deversoir & Bitter Lakes by-passes




The Length 27.5 KM

Acc. In 1980

The Present Canal 2009

Emma Maersk

(First Transit 22/9/2006 S.B.)

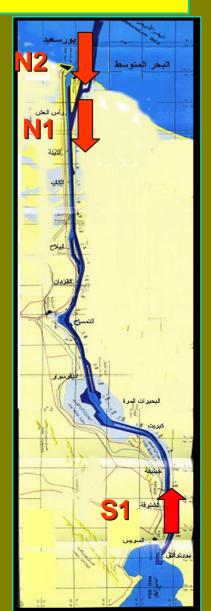
DUHAIL - LNG Tanker

First Transit: 1st April 2008

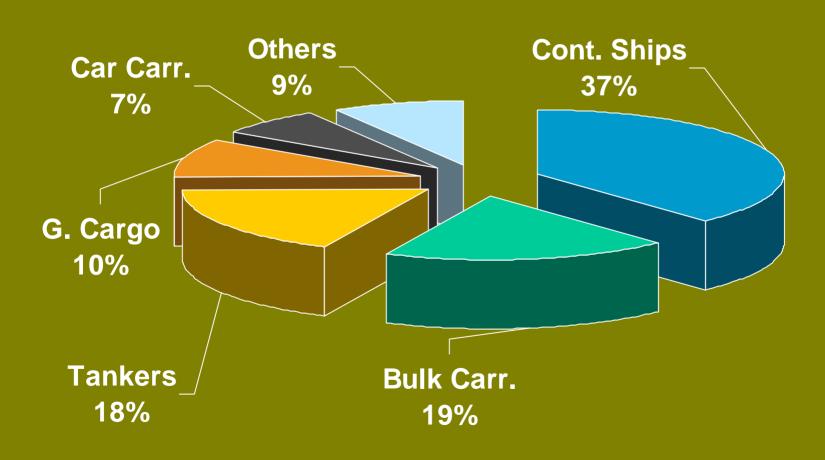
Length (m)	305.57
Beam (m)	50
Draught (ft)	40
SCNT	121667

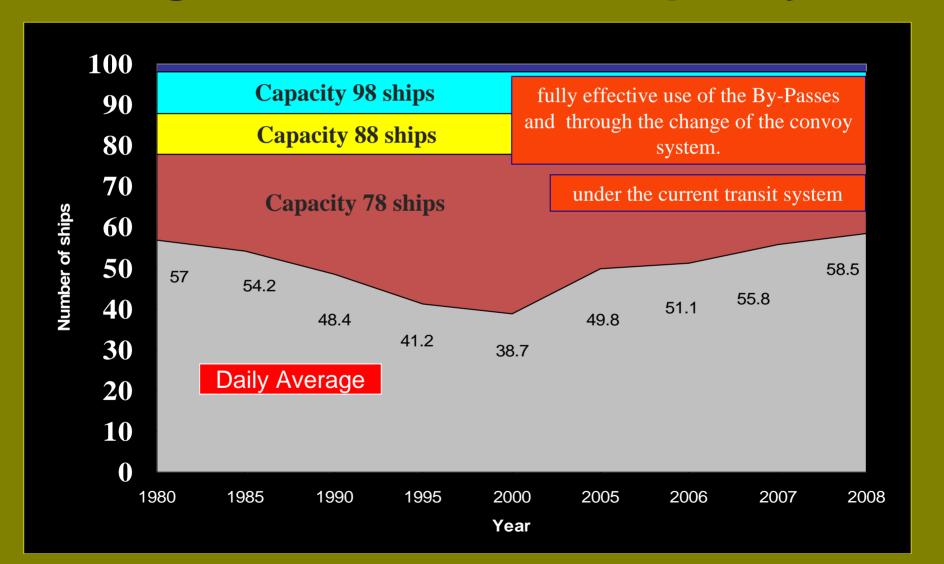
The Main Advantages of the Suez Canal

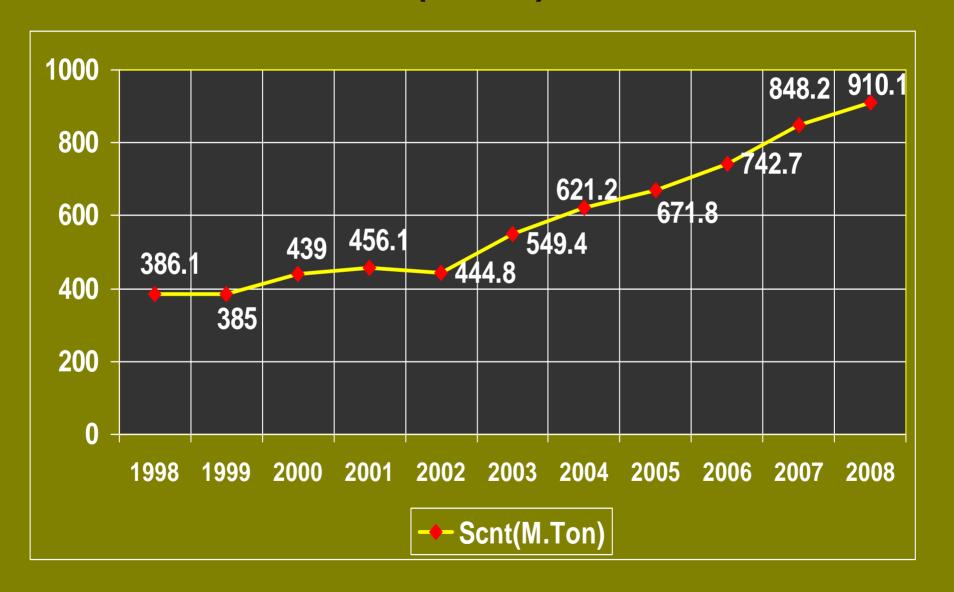
- Longest Canal in the world without locks.
- Navigation goes day and night.
- Liable to be widened and deepened when required to cope with the expansion in ship sizes of the world fleet.
- The VTMS system is securing the highest standards of safety to the vessels transiting the Canal.

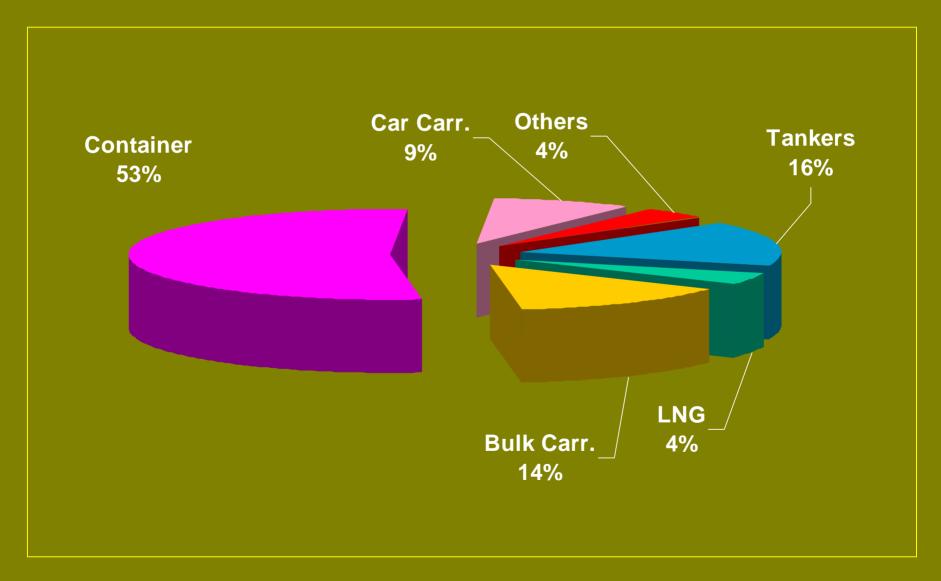

Suez Canal Traffic

Traffic System

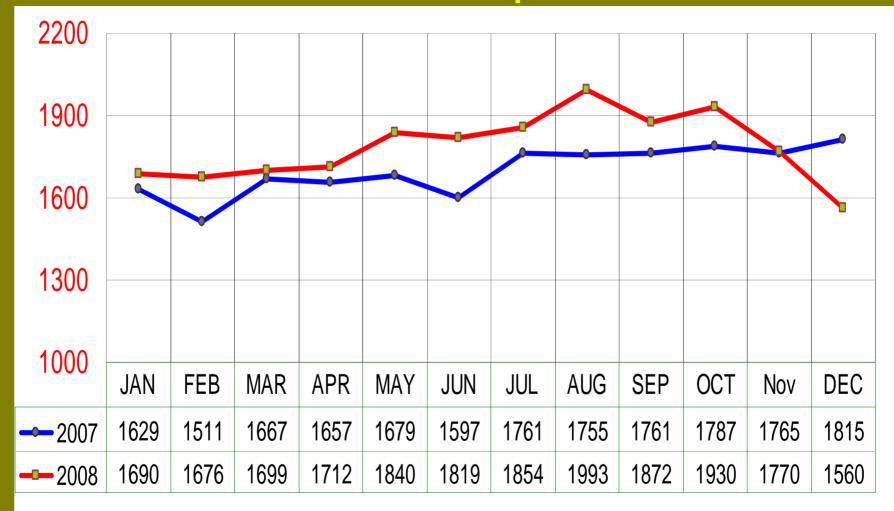

- The navigation is run in a convoy system.
- Ships transit the Canal in three convoys daily:
 - 1- From Port Said at 0000 hrs going south.
 - 2- From Port Tawfiqe at 0600 hrs going north.
 - 3- From Port Said at 0630 hrs going south.
- Permissible speed for loaded tankers 13 Km/hr.
- Permissible speed for other ships 14 Km/hr.
- Average transit time from 12 to 16 hrs


Development of the Suez Canal Traffic 1998-2008 (Numbers)


Ship Type distribution in the Canal (2008) (Numbers)


Daily average number of transits against Suez Canal capacity

Development of Suez Canal Traffic 1998-2008 (SCNT)



Ship Type distribution in the Canal (2008) (SCNT)

Suez Canal Traffic Development 2007&2008

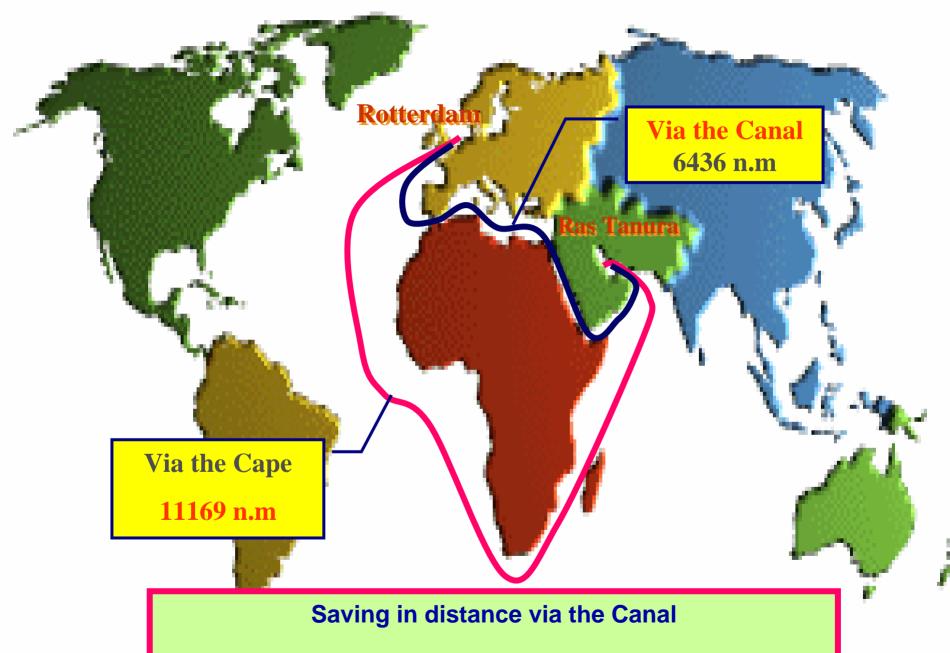
Number of ships

→ 2007 **→** 2008

Suez Canal Traffic Development 2007&2008 SCNT

The Importance of the Suez Canal

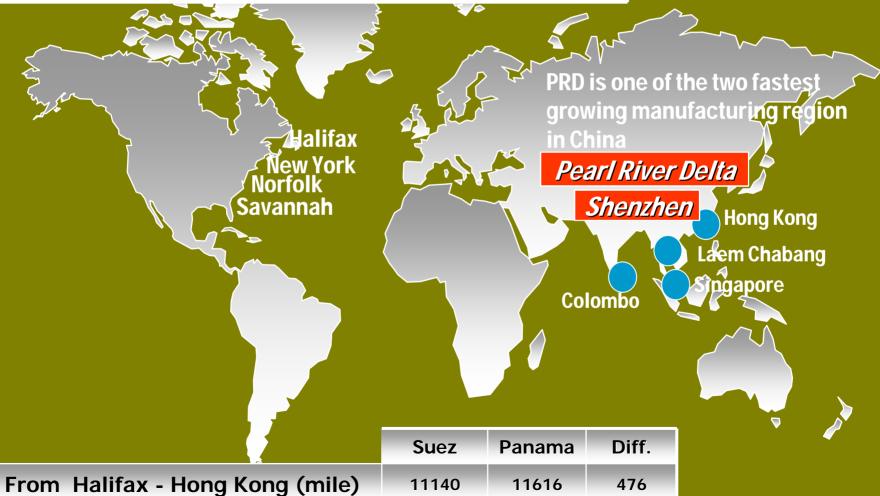
- The geographical position of the Suez Canal makes it the shortest route between East & west as compared with the Cape of Good Hope.
- The Canal route achieves a saving in distance between the ports East & West the Canal, the matter that is translated into saving in time, fuel consumption and ship operating costs.
- About 10% of the world seaborne trade passes through the Suez Canal.


Saving in Distance Via Suez Canal and Alternative Routes

A- Cape of God Hope

B- Panama Canal

A- Saving in distance achieved by the Canal compared To Cape of God Hope


	То	Nautio	cal miles	Saving		
From		SC	Cape	Saving by miles	% saving	
Ras	Constanza	4144	12094	7950	66%	
Tanura	Lavera	4684	10783	6099	57%	
	Rotterdam	6436	11169	4733	42%	
	New orleans	9645	12299	2654	22%	
Jeddah	Piraeus	1320	11207	9887	88%	
	Rotterdam	6337	10743	4406	41%	
Tokyo	Rotterdam	11192	14507	3315	23%	
Singapore	Rotterdam	8288	11755	3647	29%	

From Ras Tanura to Rotterdam (4733 n.m: 42%)

From New York To (Mile)	Suez	Panama	Difference
Hong Kong	11632	11301	-331
Laem Chabang	11002	12645	1643
Singapore	10204	12537	2333
Colombo	8600	14073	5473

Development of the Suez Canal

1- Navigational Channel

2- Equipment and Machinery

3-Safety of the Traffic and Navigational Support

4-Development of Pricing Policies

1-Development of the Navigational Channel

Development of the Navigational Channel

A . From the year 1869 till the present

Description	Unit	1869	1956	1962	1981	1994	1996	2001	2008
Overall Length	km	164	175	175	187.5	190.25	190.25	190.25	190.25
Doubled Parts	km	-	29	29	78	78	78	78	78
Depth	m	7.5	14	15.5	19.5	20.5	21	22.5	22.5-24
Cross Sectional Area	m²	304	1200	1800	3600	3800	4200	4800	5000- 5200
Max. Draft	feet	22	35	38	53	56	58	62	62
Max. tonnage	1000 tons	5	30	80	150	175	190	220	220

B. On going Development

- The work is going on for the stage of 66 ft draft.
- It is planned to be completed by the end of this year.
- Upon completed, the canal depth will be 24 m and the cross sectional area will be 5200 m² allowing loaded tankers up to 240000 tons D.W.T. to transit the canal and will be able to accommodate:
 - 99 % of the Bulk carriers.
 - 60 % of the Tanker fleet.
 - 100 % of all other types of vessels.

C. Future Development

- Another stage for widening and deepening the canal is expected to be carried out depending upon the feasibility studies. This stage will be for increasing the draft up to 72 ft.
- By the end of this stage, the canal depth will be 27m and the cross sectional area will be 6750 m² allowing loaded tankers up to 350000 tons D.W.T to transit the canal.
- Increase the lengths of double parts.

2 - Development of Equipment and Machinery

- Cutter suction dredger 31050 hp

- Year of built 1996 - Max. dredging depth 35 m

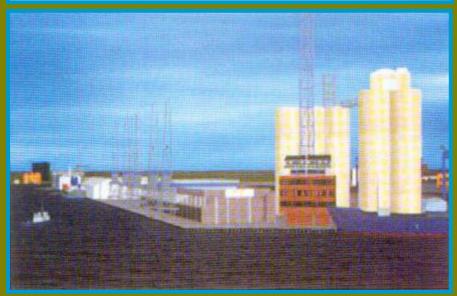
One of the biggest tugs of 160 bollard pull tons

Floating Crane Enkaz 500 tons

Floating dock of 55000 tons

3-Safety of traffic and navigational support

A- Suez Canal Vessel Traffic Management System (VTMS)


Targets achieved by the System:

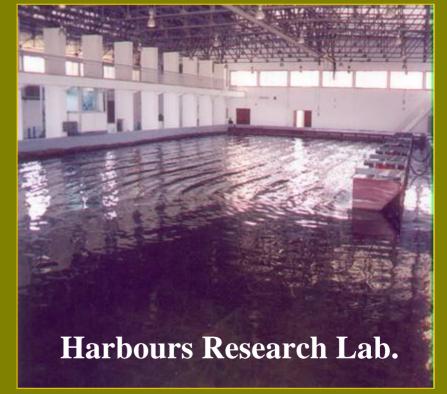
- Increasing the standards of safety of vessels transiting the canal through a radar net work covering all the canal.
- Radar surveillance covering an area of 30 Km at port-Said and Port Tawfik, and that gives an automatic announcement of arrival time of all vessels getting into the waiting area.
- Monitoring all the vessels transiting the canal to calculate average speed, separation distance, passing time at signal stations and to plot the real transit pattern.
- Participating in environment protection by decreasing the number of accidents in the Canal and dealing with them in the proper way in case they occur.

B - The Maritime Training & Simulation Centre

Main Center's Objectives

- Training of S.C.A Pilots on the main maneuvers for transiting the canal safely.
- Training the pilots in order to be able to control the vessel on different weather conditions.
- Analyzing any accident in the canal.
- Studying the expected behavior of special types of ships before their first transit.
- Updating the technical information of the pilots to the latest technology in the field of pilotage.

C. Suez Canal Research Center


Suez Canal Authority Research Center is one of the Egyptian institutions specialized in conducting research and technical studies in the fields of design and development of navigation canals, port and harbor engineering, shore protections, and marine structures.

The research center consists of five Sections:

- 1. Canal and safety of navigation research section
- 2. Harbor and coastal research section.
- 3. Soil mechanics sections.
- 4. Testing of materials and quality assurance section.
- 5. Maintenance of equipment and instrument section.

4-Development of Pricing Policies

The philosophy of the Suez Canal toll's is based on the following considerations:

- 1- Comparison of the ship voyage cost through the Canal and through other alternative routes.
- 2- Ship type and size.
- 3- Market conditions and all the economic factors affecting maritime transportation.
- 4- Keeping the Suez Canal the first choice for customers.

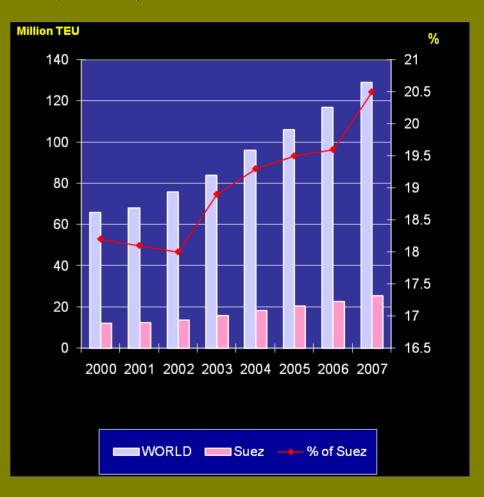
** The Tolls is revised and published yearly.

The regular dues can attract most of our customers, and for the rest we offer other policies as:

- 1-Establishing an elastic toll's system to encourage all the potential trade to pass through the Canal:
 - Long- haul vessels (Case by Case)
 - VLCCs in ballast condition (20% reduction for ships from Caribian and US Gulf to AG).
 - Environmentally friendly vessels (2% reduction for Double Hull)
 - LNG carriers (35%, plus Other reductions offered to certain quantity of gas transported via the Canal)

2-Maintaining full complementary and coordinating policy with SUMED Pipeline.

3-Time saving service for vessels arriving after the time limit against a surcharge of 3%,5% or 10% subject to vessel's time of arrival.


Suez Canal Container Traffic

Importance of Suez Canal

1000 TEU (LOADED)

Year	World Trade*	%	Trade via Suez**	%	% of Suez to world
2000	66000	_	11998	_	18.2
2001	68000	3.0	12291	2.4	18.1
2002	76000	11.8	13700	11.5	18.0
2003	84000	10.5	15852	15.7	18.9
2004	96000	14.3	18535	16.9	19.3
2005	106000	9.4	20505	10.2	19.5
2006	117000	10.4	22875	11.6	19.6
2007	129000	10.3	26466	15.7	20.5

Source: *Container Intelligence Monthly. Clarkson. March 2008
**Economic Unit. SCA

Facilities and privileges granted to container ships transiting the Suez Canal

- Container ships heading the convoys
- Container ships are to be exempted from the escorting tug boat (the rental value of escorting tugs is 8000 SDR).

- The SCA has executed a widening and deepening project for Ballah west branch aiming at allowing modern container ships up to 100,000 SCGT within the permissible dimensions to join the second southbound convoy (N2).
- Container ships carrying uncontainerised general cargo besides the containers, shall not be subject to any surcharge.

In favorable navigational conditions, the limit time for arrivals is to be extended, against a payment of a surcharge equal to a percentage of the normal transit dues with a maximum amount.

Suez Canal Container Traffic Development 2007&2008

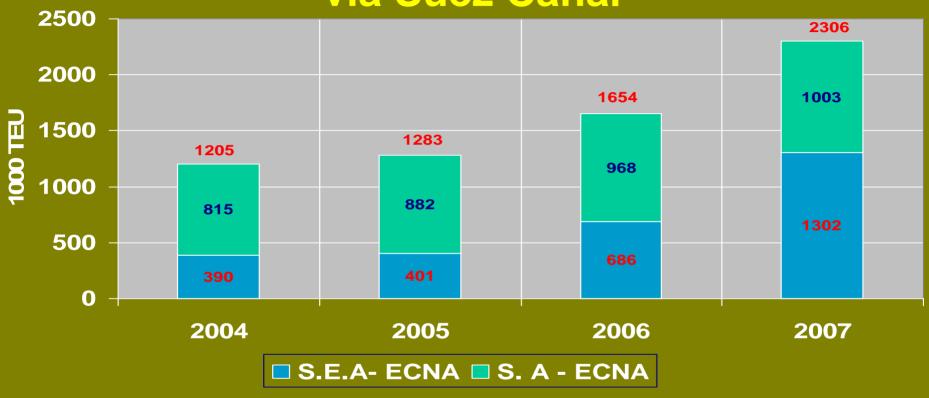
SCNT

Promoting the Suez Canal Route

Suez Canal Authority signed Four Memoranda of Understanding (MOUs) with:

- The Port Authority of New York & New Jersey On June 14, 2006.
- Virginia Port Authority On June 21, 2006 and updated in December 12, 2007.
- Maryland Port Administration On October 2,2006.
- Georgia Port Authority on June 2, 2008.

Signing MOU with Georgia Port Authority June 2, 2008


New MOU signing Suez Canal - Halifax

Jan 15,2009
A NEW MOU WILL BE SIGNED BY SUEZ CANAL AUTHORITY
AND
HALIFAX PORT AUTHORITY

Targets of the MOUs:

- •Promoting trade between Asia and the ECNA through the Suez Canal.
- •Generating business opportunities
- •Enhancing customer service.
- Boosting economic growth

Development of ECNA-Asia container traffic via Suez Canal

Yearly avg. increase:

10tal Container trade via Suez Canal 11.5	Total Container	trade via Suez Canal	11.5%
---	------------------------	----------------------	-------

ECNA – S. Asia 5.3%

ECNA-S.E. Asia 35.2%

The SCA spares no effort for the sake of ensuring a safe and secure service for all transiting Vessels; thus contributing to the prosperity of world trade and all nations as well.

