# Advanced Technology in Terminal Design

Larry W. Nye Sr. Vice President Moffatt & Nichol

MOFFATT & NICHOL

# Moffatt & Nichol

#### "A Firm Focused on the Waterfront"

- Over 60 Years Experience
- Offices in North America, Europe and Latin America
- Port & Intermodal Planning
- Terminal Planning & Analysis
- Port Financial Analysis
- Port Infrastructure Design
- Dredging & Reclamation
- Marinas
- Environmental
- Urban Waterfronts
- Bridge & Highway Design





"The real driving force behind globalization is....the declining cost of international transport."

> The Journal of Commerce "The Box That Changed the World"



# Efficiency

- Since its inception, the container shipping industry has strived to increase the efficiency of goods movement
  - Larger vessels
  - Larger terminals
  - Computers & software
  - Elimination of paper documentation
  - The internet
  - Container handling automation



# Efficiency

- What is efficiency?
  - Capacity
    - TEU's per hectare
    - TEU's per annum
  - Productivity
    - Containers moved per hour
    - Man-hours per container moved
  - Cost (terminal)
    - Land
    - Infrastructure
    - Equipment
    - Computers and software
    - Labor



# **Presentation Outline**

- Automated terminals
- Integrated terminal design
- Simulation as a design decision-making tool

# **Automated Terminal**

- The "automated terminal" is just the latest step in the evolution of containerization
- What does "automated" mean?
  - Robotics
    - Automated yard cranes
    - Automated horizontal transport
  - Decisions are made by the Terminal Operating System
    - Instead of planning ahead, the automated terminal can make decisions at the last minute



## Efficiency

- The goal of an automated terminal is to strike the best balance between;
  - Capacity
  - Productivity
  - Cost
- "Automation" is not the goal

#### End-Loaded Design Seperates Vessel and Gate Traffic



#### Side-Loaded Causes Traffic to Mix



GATE & RAIL SERVERS



DOCK CRANE SERVERS

Parallel, side loaded (ala Pusan New Port) Mixed waterside and landside traffic Not compatible with automated waterside transfer



# "Automated" Container Terminals

- ECT, Rotterdam, Netherlands
- CTA, Hamburg, Germany
- APMT, Norfolk, USA
- Antwerp
- Abu Dhabi
- London Gateway
- Many others under consideration

#### A State-of-the-Art Automated Terminal

#### • CT-A, Hamburg, Germany



## Automated Horizontal Transfer

- AGV's
  - Unmanned, diesel powered, rubber tired, bottom-supported container
- Shuttle/straddle carriers
  - Unmanned, diesel powered, rubber-tired, top-lifted container







**MOFFATT & NICHOL** 

#### Cost is Driving Terminal Automation

- Rising terminal development and labor costs are driving terminals to automate
- On a recent US West Coast terminal study, it was determined that a new terminal could not be competitive with existing terminals unless it was automated

#### **Example:** Cost per Lift - US West Coast



#### **Top Pick and Strad Could Not Meet Capacity Goal**



16 MOFFATT & NICHOL

#### **RTG and Side-Loaded RMG Could Not Meet Vessel Productivity Goal Due to Conflict with Gate Traffic**



#### Only End-Loaded RMG's with Automated Horizontal Transport Could Meet all Goals



## A Recent Terminal Planning Project

#### Capacity

- 3 million TEU's per year annual capacity
- 35% rail, 65% gate, 0% transshipment
- 3-12,000 TEU vessel calls per week
  - 11,000 moves per vessel call in 96 gross hours
- 125 hectares, 1,300 m quay

Productivity

- Waterside
  - Vessel 160 net container moves per hr x 3 vessels = 480 mph
- Landside
  - GateRail
- 420 lifts per hr peak day
- 140 lifts per hr peak day
- Total 560 moves per hr
- Horizontal transport to transition from manned bomb carts to automated
- Cost
  - Competitive with existing terminals
  - Lowest cost per lift



#### A Recent Terminal Planning Project

- Questions to be answered by simulation;
  - How many and what kind of quay cranes?
  - How much stacking capacity?
  - How many automated stacking cranes and what size stacks?
  - What kind of horizontal transport? How many units?
  - How many rail tracks and how many rail loading cranes?
  - Total cost per lift?



# **Inventory Simulation**

- Tests rail and vessel schedules to determine range of container storage required
- Inventory simulation showed that;
   Vessel schedule has a profound effect on storage requirement for intermodal cargo
   At least 60,000 TEU's of storage capacity will be required

#### Intermodal Inventory Simulation - Worst Case Vessel Schedule



#### Intermodal Inventory Simulation - Best Case Vessel Schedule



#### **Intermodal Inventory Simulation - Container** Population Maximum Number of Containers (TEU's) Buffer EB WB **Best Case** Worst Case **Percent Increase** 102% 121% 135% Weekly Buffer Population Fluctuation **Best Case** Weekly Buffer Population Fluctuation Worst Case Total Boxes -WB EΒ Boxes Hour Hour MOFFATT & NICHOL

# **Quay Crane Simulation**

- Showed that tandem lift or dual trolley cranes would be required to meet vessel productivity goal
- Showed that tandem lifts would create extreme peaks and valleys in productivity and that the transport and yard crane systems would have trouble keeping up
- Recommended single-trolley tandem lift, quay crane initially working with bomb carts
- Dual trolley, tandem main and single secondary working with AGV's ultimately

#### Five QC Configurations Were Simulated



## Simulated QC Layout



#### **Quay Crane Relative Net Productivities**

 Single-trolley tandem showed 33% increase over singletrolley single



**Quay Crane Productivity - Combined Above and Below Deck** 

28 MOFFATT & NICHOL

#### Quay Crane Relative Net Productivities

Dual trolley single lift showed 15% increase over single • trolley single



29

## **Quay Crane Simulation**

- A common complaint of tandem lift cranes is that "the yard can't keep up"
- So, a fleet of 5 quay cranes was simulated to test the effect of tandem lifts on the yard crane and transport fleets

#### 15 Minute Interval, 5 Cranes Working, Scenario 2. "ST, T"

É

Single trolley Tandem lift

- Peak rate = 260 mph = 52 mph/QC
- QC fleet max/min = 1.55



#### 15 Minute Interval, 5 Cranes Working, Scenario 5. "DT, TT"

- Peak rate = <u>348</u> mph = 70 mph/QC
- QC fleet max/min = 1.43

Dual trolley Tandem lift, Tandem lift DT, TT

П



Containers Grounded Per 15 Min - Main Trolley Tandem,

32 MOFFATT & NICHOL

#### 15 Minute Interval, 5 Cranes Working, Scenario 4. "DT, TS"

- Peak rate = 260 mph = 52 mph/QC
- QC fleet max/min = 1.34



Dual trolley Tandem lift, Single lift DT, TS

> 33 MOFFATT & NICHOL



Containers Grounded Per 15 Min - Main Trolley Tandem,

## **Quay Crane Simulation**

- The dual trolley crane with tandem lift main trolley and automated single lift secondary trolley;
  - Met vessel productivity goal
  - Presented the ASC and transport systems with a manageable flow of work

## **Quay Crane Simulation Conclusions**

#### Tandem lifts

- Can provide high productivities (50% tandem lifts result in 33% improvement)
- Adding a secondary trolley without tandem lifts can improve crane productivity by 15%
- Tandem lifts causes extreme peaks and valleys
  - It is very difficult for the transport and yard systems to deal with and adjust to those peaks
  - Automated transport and stacking systems need a steady supply of work.

#### Secondary trolley (st)

- A secondary trolley working in the backreach is preferred for automated transport
- In terms of pure net productivity, tandem lift is higher
- In terms of serving the transport and yard systems, single lift, dual trolley is favored
- If start-up mode is single-trolley, tandem lift, provision for a singlelift secondary trolley is advised

## Yard Crane Simulation

- Single-block simulation

   What can each crane/block do?
- Fleet of stacks

- What can "the system" do?



#### End-Loaded ASC Model

💥 Arthon ephir View - 1 - model -62 37 MOFFATT & NICHOL

# Yard Crane Simulation

- Showed that twin ASC's could achieve 16 moves per hr landside and 18 moves per hr waterside
- Showed that 40 ASC stacks (80 cranes) would be required to meet the peak landside demand of 520 moves per hr

   40 x 16 x .90 maint. factor / 1.15 unbalanced workload factor

# **Railyard Simulation**

- Rail Yard simulation showed;
  - That 8, 1175m loading tracks would be required
  - 6 rail loading RMG's would be required
  - Train turn times
  - Track and crane utilization



39

# The Result

- The plan that emerged from the planning process
  - Three berths with up to 14 dual trolley quay cranes with;
    - tandem-lift main trolley and automated single-lift secondary trolley or
    - single-lift main and automated secondary trolleys
  - 3 million TEU annual capacity
  - Automated waterside transport using AGV's, 4-5 AGV's per quay crane
  - 40 end-loaded ASC stacks with twin cranes, 8-wide by 5 high by 40 TEU long
  - 6 rail-loading cranes spanning 8 tracks each, 3-4 drivers per rail crane

## The Plan That Emerged

#### (Looks something like this)



41 MOFFATT & NICHOL

#### A Recent Terminal Planning Project

- This planning project required analysis of all aspects of the terminal operation
  - Vessel, gate and rail schedules, traffic projections and resultant container populations
  - Vessel productivity
  - Quay crane configurations
  - Horizontal transport alternatives
  - Yard crane fleet configuration
  - Railyard configuration and sizing
  - Understanding of terminal operating system rules
  - Understanding of unique local labor and safety rules

# Integrated Terminal Design

- Integrated design of an automated terminal includes achieving the best balance of the clients;
  - Capacity goals
  - Performance goals
  - Financial goals
    - Infrastructure
    - Equipment
    - Labor
    - Maintenance
    - Operating systems



# Integrated Terminal Design

- In fact, the design of a successful automated terminal requires the cooperative effort of a core team of experts from each discipline;
  - Management
  - Finance
  - Operations
  - IT Systems
  - Equipment (specification)
  - Civil / infrastructure
  - Maintenance



## Integrated Terminal Design



## Conclusions

- The container shipping and port business constantly strives to reduce the cost of goods movement through efficiency
- Automated container handling is a way to increase efficiency
- Terminal automation technology has reached a level of maturity that makes it a viable option for any major project
- No two terminals are the same, so a variety of solutions are seen

# Thank You

