APA Harbors, Navigation and Environmental Seminar

Bayport Sustainable Development: Planning, Design, and Operational Practice

Bayport

Created to be a standout in the industry
 Exemplifies the environmental commitment of PHA—the standard for the rest of our facilities

First U.S. Container Shipment: Ideal X to Houston

1956: 58 containers from New Jersey to Houston

PHA Terminals

Primary terminals along a 32-mile reach of the ship channel

Bayport in the 1960's

 Very lightly developed
 Former W W I airfield and rice fields
 Partnership between PHA and industrial developers

Bayport—June 2004

 Over 80 plants in the Bayport Industrial District
 6,600 vessel transits of the

Bayport channel

annually

Bayport Terminal

Development Pressures

- Permits
- Homeowner opposition
- Alternative sites
- Funding
- Regional growth
- Jobs
- Lawsuits

- ISO 14001 Initiative
- Costs
- Best practices
- PHA commitments
- Continuous improvement

The Route to Sustainable Development

- In 1998, Bayport planning didn't start with "sustainability" in mind
- Planning was molded by environmental and social considerations
 - Many planning commitments were codified by permits, requiring special features and construction practices
- "Green" development was an early focus
- Design flowed from planning commitments
 - Design details used best practices
 - Sustainable design philosophy extended goals and further improved the product

Bayport Sustainable Development

Focus areas:

- Site factors
- Minimizing social impacts
- Storm water practices
- Emissions and air quality
- Energy efficiency
- Quality and durability of infrastructure
- Low-impact materials, reuse and recycling
- Other social and economic features

Full cycle considerations: planning, design, construction, and operations

Site Planning

- Size considerations-right sizing
 - Consolidation of container storage on the terminal—no sprawl
 - Preferable to minimal site, with only core business
- Transportation-help separate truck from POV traffic
- Relocation of access roads to service communities
- Insulate the terminal from the public-sight and sound
- Minimize impact to municipal services
- Best practices-stormwater management
- During design, relocated the pre-check gate

Site Design Features

- 19.7 acres of jurisdictional wetlands replaced at 3.4 to 1, plus 900 acres of wetlands and coastal prairie placed in conservation easements
- Minimized heat sink—cool roofs, Portland cement concrete

Site Design Features

- Sight and sound bermsover 16,000 lf
- Native plants
- Isolates terminal, roads, and rail

 Landscape screening on north shore

Social Features-Improve support or Minimize Impact to the Community

- High voltage substation, independent of community service
- Independent sewer system, connected to industrial treatment
- On-site police, fire, emergency response services

Social Measures-Noise Mitigation

- Use of electric dredge, built for a Bayport project
- Use of broadband backup alarms to eliminate "nuisance" beeping alarms
- Commitment to construct wharf with drilled shafts, not driven piles
- Noise limits during construction—75dbA during the day, 55 dbA at night
- Special exhaust mufflers on yard cranes

Social Impacts-Water and wastewater

- Eliminated consideration of well supply, because of association with localized subsidence;
- Built a 1,000,000 gallon elevated storage tank, connected it to municipal water line, to improve pressure to the community—then conveyed it to the city
- Constructed separate waste water utilities, tied to industrial treatment facility

Additional Social Features

- No visible glare from site illumination
 - Fixture cutoff
 - Non-reflective poles
- No fugitive construction dust

Stormwater Quality

- "First flush" –capture of first one inch or rainfall for entire terminal
- 28 acres of ponds
 EPA: valve outfall to enable containment from first flush pond

Stormwater Quality Design features

- Leaking container station (isolated drainage)
- Closure gates in trench drains
- On-site hazmat response
- High impact area
- Oil water separators
- Automated samplers

Stormwater-Watershed Planning and Commitments

- Design to mimic existing drainage flow-volume and rate
- Wetland creation within retention ponds

Emissions

- 25 ton rolling 12-month limit on construction emissions for Nox
 - Use of an emissions calculator for planning and management
- Consolidated gate-eliminates over one million truck miles annually
- Infrastructure to support future "cold ironing"

Emissions Reduction-Construction

- On-site batch plants-eliminating over 200,000 truck miles to date
- Mechanical dredging, where necessary
- Electric hydraulic dredge use (powered through Bayport substation)
- Contractors repower equipment with cleaner engines, use catalytic converters, fuel additives, limit idling, use electric carts
- Barged aggregate deliveries

Air Quality-Operations

Operational commitments:

- Tier III engines on equipment
- Earlier use of ultra-low sulfur diesel than required
- All new vehicle fleet at Bayport—including stevedore operations
- Fuel-reducing diesel engine technology on yard cranes

Energy Efficiency

- New 138 kV substation and transmission lines
 - Efficiency
 - Separation from community

 Regenerative power from crane operations used within the system-

Use of Recycled Materials

- Dredge fill-5 million CY to be dredged and used as fill to elevate the site
- Recycled concrete-over 200,000 tons to date
 - Crushed concrete base course for pavement
 - Outfall and shoreline revetment material reclaimed from demolition of relocated county road

ENVIRONMENT

SOCIAL

ECONOMIC

Quality and Durability Design impact measures

 Modified pavement design— 30-year life vs. original 20-year thickness, for a 2% additional cost

Fly ash use in soil modification

Wharf designs use high strength steel to reduce steel quantity and improve constructability

Low-Impact Materials-Design

- Standard pavement was redesigned to eliminate rebar from the latest 95 acres of container yard (approximately 12 million pounds)
 - Closest source was 200 miles away)
- Concrete mix design revised to include fly ash as 25% cement replacement
- Steel sheet pile walls were substituted for heavy riprap (available source in Illinois)

ROLLER COMPACTED CONCRETE

Sustainable Buildings

 Administration/ gate building will be LEED certified
 All buildings will incorporate LEED features

Sustainable Buildings

 Next two stevedore support buildings (5,500 sf each) will use containers as the structural system
 Containers will be used, configured locally

Sustainable Buildings-Cruise Terminal

Designed to LEED standards

 Incorporates translucent walls to reduce electrical load

Sustainable Design Practice

Policy for PHA facilities

- Consideration of sustainable products and practices for all terminal projects
- During development of every project, coordination among PM, Environment, Operations, and Maintenance staff for sustainable development and complementary improvements
- LEED standards for all major building projects
- Requirements and metrics part of the EMS
- Sustainable development outreach to tenants and Port of Houston partners and businesses
- PHA finds environmental, social, and economic principles to be truly complementary

The Port Delivers the Goods....

121-7