Bayport Sustainable Development: Planning, Design, and Operational Practice
Bayport

- Created to be a standout in the industry
- Exemplifies the environmental commitment of PHA—the standard for the rest of our facilities
First U.S. Container Shipment: Ideal X to Houston

1956: 58 containers from New Jersey to Houston
PHA Terminals

Primary terminals along a 32-mile reach of the ship channel
Bayport in the 1960’s

- Very lightly developed
- Former W W I airfield and rice fields
- Partnership between PHA and industrial developers
Bayport—June 2004

- Over 80 plants in the Bayport Industrial District
- 6,600 vessel transits of the Bayport channel annually
Development Pressures

- Permits
- Homeowner opposition
- Alternative sites
- Funding
- Regional growth
- Jobs
- Lawsuits
- ISO 14001 Initiative
- Costs
- Best practices
- PHA commitments
- Continuous improvement
In 1998, Bayport planning didn’t start with “sustainability” in mind.

Planning was molded by environmental and social considerations:
- Many planning commitments were codified by permits, requiring special features and construction practices.

“Green” development was an early focus.

Design flowed from planning commitments:
- Design details used best practices.
- Sustainable design philosophy extended goals and further improved the product.
Bayport Sustainable Development

Focus areas:

• Site factors
• Minimizing social impacts
• Storm water practices
• Emissions and air quality
• Energy efficiency
• Quality and durability of infrastructure
• Low-impact materials, reuse and recycling
• Other social and economic features

Full cycle considerations: planning, design, construction, and operations
Site Planning

- Size considerations—right sizing
 - Consolidation of container storage on the terminal—no sprawl
 - Preferable to minimal site, with only core business

- Transportation—help separate truck from POV traffic

- Relocation of access roads to service communities

- Insulate the terminal from the public-sight and sound

- Minimize impact to municipal services

- Best practices—stormwater management

- During design, relocated the pre-check gate
Site Design Features

- 19.7 acres of jurisdictional wetlands replaced at 3.4 to 1, plus 900 acres of wetlands and coastal prairie placed in conservation easements

- Minimized heat sink—cool roofs, Portland cement concrete
Site Design Features

- Sight and sound berms - over 16,000 lf
- Native plants
- Isolates terminal, roads, and rail
- Landscape screening on north shore
Social Features-Improve support or Minimize Impact to the Community

- High voltage substation, independent of community service
- Independent sewer system, connected to industrial treatment
- On-site police, fire, emergency response services
Social Measures - Noise Mitigation

- Use of electric dredge, built for a Bayport project
- Use of broadband backup alarms to eliminate “nuisance” beeping alarms
- Commitment to construct wharf with drilled shafts, not driven piles
- Noise limits during construction—75dbA during the day, 55 dbA at night
- Special exhaust mufflers on yard cranes
Social Impacts-
Water and wastewater

- Eliminated consideration of well supply, because of association with localized subsidence;
- Built a 1,000,000 gallon elevated storage tank, connected it to municipal water line, to improve pressure to the community—then conveyed it to the city
- Constructed separate waste water utilities, tied to industrial treatment facility
Additional Social Features

- No visible glare from site illumination
 - Fixture cutoff
 - Non-reflective poles
- No fugitive construction dust
Stormwater Quality

- “First flush” – capture of first one inch or rainfall for entire terminal
- 28 acres of ponds
- EPA: valve outfall to enable containment from first flush pond
Stormwater Quality Design features

- Leaking container station (isolated drainage)
- Closure gates in trench drains
- On-site hazmat response
- High impact area
- Oil water separators
- Automated samplers
Stormwater-Watershed Planning and Commitments

- Design to mimic existing drainage flow-volume and rate
- Wetland creation within retention ponds
Emissions

- 25 ton rolling 12-month limit on construction emissions for Nox
 - Use of an emissions calculator for planning and management
- Consolidated gate-eliminates over one million truck miles annually
- Infrastructure to support future “cold ironing”
Emissions Reduction-Construction

- On-site batch plants-eliminating over 200,000 truck miles to date
- Mechanical dredging, where necessary
- Electric hydraulic dredge use (powered through Bayport substation)
- Contractors repower equipment with cleaner engines, use catalytic converters, fuel additives, limit idling, use electric carts
- Barged aggregate deliveries
Air Quality-Operations

- Operational commitments:
 - Tier III engines on equipment
 - Earlier use of ultra-low sulfur diesel than required
 - All new vehicle fleet at Bayport—including stevedore operations
 - Fuel-reducing diesel engine technology on yard cranes
Energy Efficiency

- New 138 kV substation and transmission lines
 - Efficiency
 - Separation from community

- Regenerative power from crane operations used within the system-
Use of Recycled Materials

- Dredge fill - 5 million CY to be dredged and used as fill to elevate the site
- Recycled concrete - over 200,000 tons to date
 - Crushed concrete base course for pavement
 - Outfall and shoreline revetment material reclaimed from demolition of relocated county road
Quality and Durability
Design impact measures

- Modified pavement design—30-year life vs. original 20-year thickness, for a 2% additional cost

- Fly ash use in soil modification

- Wharf designs use high strength steel to reduce steel quantity and improve constructability
Low-Impact Materials-Design

- Standard pavement was redesigned to eliminate rebar from the latest 95 acres of container yard (approximately 12 million pounds)
 - Closest source was 200 miles away
- Concrete mix design revised to include fly ash as 25% cement replacement
- Steel sheet pile walls were substituted for heavy riprap (available source in Illinois)

ROLLER COMPACTED CONCRETE
Sustainable Buildings

- Administration/gate building will be LEED certified
- All buildings will incorporate LEED features
Sustainable Buildings

- Next two stevedore support buildings (5,500 sf each) will use containers as the structural system
- Containers will be used, configured locally
Sustainable Buildings-Cruise Terminal

- Designed to LEED standards
- Incorporates translucent walls to reduce electrical load
Sustainable Design Practice

- **Policy for PHA facilities**
 - Consideration of sustainable products and practices for all terminal projects
 - During development of every project, coordination among PM, Environment, Operations, and Maintenance staff for sustainable development and complementary improvements
 - LEED standards for all major building projects
 - Requirements and metrics part of the EMS
 - Sustainable development outreach to tenants and Port of Houston partners and businesses

- **PHA finds environmental, social, and economic principles to be truly complementary**
The Port Delivers the Goods…

From a more sustainable Bayport