

Marine Terminal Management Training Program Jacksonville, FL

Trends in Container Terminal Design

October 26, 2010

Paul Starr, PE, CEng Vice President Halcrow Vijay Agrawal, Sr. Port Analyst and Planner, AECOM

AECON

Introduction

- Container terminal design trend
- Factors driving the trend
- Planning and engineering of a terminal
 - Number of berths, water depth
 - Land usage
 - Site elevation
 - Infrastructure

 $\Delta = CO$

Container terminal design trend North America

Historically operating at low density and high labor cost

Due to growing environmental concerns pressure to operate with

- Fewer air emissions
- Higher density

Automation has been slow but growing

- Perceived inefficiency of the first systems
- Resistance of organized labor
- Capital cost of implementation

Container terminal design trend North America

APMT Terminal in Norfolk, VA leading the trend

- ASCs with manual shuttle carriers
- 50% increase in avg QC productivity
- Ports America Concession at Port of Oakland with similar scheme

Strong interest in hybrid RTGs

- Reduce pollution
- Increase fuel savings
- Battery and flywheel-based

Tandem 40 Quay Cranes arrived in **Deltaport**, Vancouver

AECON

Container terminal design trend Asia

High density, low labor cost (RTG + tractors)

Low but growing environmental concern

Trending towards semi-automation

- Overhead bridge crane system at Singapore
- Automated RTGs Toshima terminal in Japan
- Double cantilever RMGs at Pusan and Shanghai

Early adapters of Tandem-40 cranes

Container terminal design trend Europe

- Medium density, high labor cost (straddle carrier based)
- High environmental concerns
- Moderately strong union
- Pioneer of highly automated terminals
- Robotic AGVs + ASCs
- Dual hoist cranes (2nd hoist automated)

Factors Driving the Container Terminal Design

North America Container Port Traffic (TEUs)

North America Container Port Traffic (% of total)

Kalcrow

American Association

Alliance of the Ports of Canada, the Caribl Latin America and the United States

Length Distribution of Recently Built Container Verset of Grade, the Caribbean (Panamax or larger)

merican Associatio

Draft Distribution of Recently Built Container Vessels (Panamax or larger)

American Association

Automation Technology

Safety and Security

AECOM

Safety

- Fewer people = fewer people getting hurt
- No need for trucks to drive underneath yard cranes

- Security
 - Street truckers cannot access containers directly
 - Fewer terminal personnel
 - Computer control and recording of all container movement
 - Automated scanning of cargo while in the CY

Brisbane, Australia Fully Automated Operating System

Environmental Concerns

And.....Site Location... Location... Location

- Green field or brown field?
 - Relocation of existing tenants
- Excavation vs. dredging
 - Environmental mitigation
- Terminal access and utilities

1. Waterside Infrastructure Planner's Concerns

1. Waterside Infrastructure Engineer's Concerns

merican Association

liance of the Ports of Canada, the Caribbear

Latin America and the United States

Berth Alignment Study

Minimal Environmental Impacts

Bulkhead aligned to minimize impacts on St Johns River

Englastitestion

AECOM

Site fill required

rialcrow

Solution was to dredge at the same time of bulkhead construction

Temporary and permanent spoil cells

Modified Cell XY

Dredge concept was to allow muds to flow into a channel and be pumped over to Bartram Island

Cell XY

Dredger was placed inside cell to pump excess water and muds over to Bartram Island

October 29, 2010

Cell XY

Sand dredged into cells on Dames Point was very good quality

Bartram Island

...and muds that separated out were pumped over to Bartram Island via a submerged pipeline

American Association of Port Authorities Alliance of the Ports of Canada, the Caribbean, Latin America and the United States

Construction activities

Halcrow

October 29, 2010

Page 30

August 2007

Dredging and bulkhead construction scheduled in parallel

By September, dredging, bulkhead and civil works concurrent

2. Land Usage Planner's Concerns

Plus....Terminal Layout Needs to Account for

Productivity	Capacity	Service reliability	Flexibility for increased velocity or capacity
Flexibility for expansion	Startup risk	Suitability for robotic operation	Flexibility to respond to odd operating situations
Maintainability and durability	Capital Cost	Labor	Entry and exit gate locations
Location of any on- terminal queuing locations	Width of traffic aisles	Location of private vehicle parking	Procedure for transporting personnel to and from work locations

Case Study: West Basin Container Terminal

Terminal Layouts (RTG Cases)

ASC Layouts Left ASC with Straddle Carriers; Right: ASCs with terminal tractors

Halcrow

October 29, 2010

Container Yard Capacity and Equipment Fleet

American Association of Port Authorities Alliance of the Ports of Canada, the Caribbean, Latin America and the United States

Cost per Vessel Move by Option

Freeport Bahamas – Transhipment Terminal Parallel RMGs with Strads

2. Land Usage Engineer's Concerns

- Geotechnical information of site (suitability for pavements and building foundations)
- Topography of site cut and fill
- Environmental impacts for permitting (wetlands?)
- Storm water drainage
- Tide levels
- Flooding (storm surges, hurricanes, heavy rain)

Minimal Environmental Impacts

Yellow – Freshwater wetlands impacts 3 acres of impact

Red – saltwater wetlands impacts 0.4 acres of impact

AECOM

Minimal Environmental Impacts

3. Infrastructure Connectivity

Planner's Concerns

- Access to main roads
- Access to rail
- Connection to local utility providers
 - Terminal demands (power, lighting, sewer, water)
- · Intensity of traffic flows

Road Access and Queuing Capacity

Chicago Para

178

Rail Access and Bottlenecks

Intermodal Container Transfer Facility

3. Infrastructure Connectivity

Engineer's Concerns

- Traffic studies (impact on local traffic) solutions?
- Power demands substation, direct service, voltage etc.
- Sewer gravity, force main, pump stations etc.
- Water potable, fire mains, irrigation (local service, wells, salt water etc.)
- Telephones and data
- Permitting

Site Access

Early Concept

Final Layout

Summary of Container Terminal Design Trends

- Longer and deeper container vessels
- Automation of processes and equipment
- Densification of storage
- Sustainable and environmentally friendly

Questions or comments?

