Container Terminal Planning & Operations

American Association of Port Authorities Marine Terminal Management Training Program Long Beach, California June 9-13, 2013

Thomas Ward, PE/SE, D.PE Chief Engineer Ports America

GLOBAL REACH. LOCAL RESULTS.

Latest Trends – This and That

- Marine terminal lighting technology
 - Light emitting plasma and other new technology
- Ships and cranes
 - 8-high on deck and its implications
- New terminals in old boundaries
 - Automating the original terminals

Terminal Lighting Technology

- Virtually all terminal lighting is done with highpressure sodium (HPS) fixtures mounted on highmast light towers
- These are typically "1000 W" fixtures
- Poles range from 80' to 150' in height
- Pole spacing is usually on the order of 3.0 to 3.5 times the pole height, typically 250' to 400'
- Poles have rosettes of 8 to 12 fixtures per pole
- Maintenance is done by longshore mechanics
- Each pole and foundation costs ~\$300,000

Regulatory and Safety Environment

- Lighting of the working areas of marine terminals is governed by 29 CFR 1917.123 (OSHA/NMSA)
- This requires:
 - 5 foot-candles "minimum average" in marine terminal working areas
 - 1 fc minimum
- Engineers limit Maximum / Average to 3:1 or less
- The regulation is silent as to how this is to be measured or established
- Traditionally, this has been done with lighting models prepared by the light fixture vendors

Limitations of HPS

- High power consumption
 - 1280 w x \$0.146/kWh = ~\$818/fixture/year (California)
- Short replacement cycle
 - 10,000 hours to ballast and fixture replacement (2 yr)
- High light pollution
 - Fixture design relies on glowing housing to spread the light, which causes substantial sky glow
- Poor light quality
 - Light is in the pink-yellow part of the spectrum, not optimized for human night vision

Outer Harbor Marine Terminal, Oakland

175 gross acres of marine terminal107 high-mast light poles, 8 to 12 luminaires each1,000 luminaires totalAbout 1 MW in total power consumption by lightsMassive light pollution from this and other facilities

Light Emitting Plasma

LEP Test Installation at OHMT

LEPs vs. HPS at OHMT

At Luminaire Height

LEP Numeric Results vs. OSHA Requirements

- OSHA Minimum Average:
 ≥ 5 fc required, 5.1 achieved
- OSHA Minimum:
 ≥1 fc required, 1.3 achieved
- Uniformity:
 ≤3:1 required, 2.1 achieved
- With new LEP lamps,
 <u>OSHA requirements are met</u>
- Color is substantially improved

Summary

- LEP effectiveness established
- Payback for new: 1.5 years
- Payback for replacement: 3.2 years
- Substantially improved visibility
- Substantially improved uniformity, spread
- Substantially reduced light pollution
- Substantially improved control
- Substantially reduced maintenance
- Energy consumption reduced >50%
- All on the current light pole system

Alternatives to LEP and HPS

Light-Emitting Diode

- Each emitter is small, 100s of emitters per fixture
- Very pointable
- Very sensitive to heat, so large heat sinks required
- Result is a heavy head, about 95 lbs, to achieve current lumens/fixture
- Capital cost the same as LEP
- Energy savings a bit more than LEP

Metal Halide

- Each emitter is large, and can produce a lot of light
- Mirrors can direct as needed
- Not a lot of energy savings
- Not a lot of capital savings
- A good option if you are stuck with very long pole spacing and need more light

Ships and Cranes

• Shipping lines have long predicted ships of 20 to 24 container stacks across on deck

- Beam up to 200 ft or 61 m

• No one really predicted that ships would get a lot taller, up to 8-high on deck

The New Monsters

-		-		- 10		-		20	- 10	SBLIFY (BY MO GU	DELNE	15 AM CRAW	OHT, EVE	NKEEL		PROFILE	84-00X 825-46 9.092X 815-46
	28	28	28	78	3	20	20	70	28	20		- 30	- 2	- 18		-	2	FORCK ISE WARE
	- 28	38	27	35	3			-20	- 79			20	28	*		*	12	ECECK ANI
(法)	- 28	28	28	36	28	28	2	- 30	28	*	- 20	- 20	*			- 16	Ŧ	MINAN -
	- 28	- 28	10	. 20	28	28	- 28	20	- 28	38	- 20	- 30	28			*	-	6-1804 - 1970a
200	() 28	-28	0.00	- 20	62	28	0.6128	-30	620	20	20	- 20	20	- 16	0 4		1	NORTH AND
ZU	6728	- 28	10128	- 20	E(28	20	E928	35	628	20	20	20	20	-	1 4			ACEX A
71	0.28	27	0.0	3	0.2	20	10.20	30	02	20	-20	- 20	2	10				DAMAN (2)
h			-		41111	1 1 1 1		1	-		a creat	11 1 1 1 1	Gerry		1		1	UPTER CEON RAIL
1	1	-		18		18	1		-	10	_	tă.	14	34	12	10	BOBUN BTORE	
1 100	1	6		8		0	1	8	1	6	- 16	18	14.	10	18	4	1 穴	<u> </u>
27.138 ·	1.00	-		- 10	- 10		- 10	18			. 34	10	10	10		4		. 87/0
1		-16	ж	-10	- 18	1		-18	14/	1.10	14	10	- 14	- A.)	. 4	3	UPPER T	
2	10	- 10	10	18	19	18	- 38	- 10	. 18	94.	-02		. 0	9			SLWL SLWL	51.81 B
1		-		- 18		18	1.00		14	u I	10	1.4	1.0	1.4				
A A A A A A A A A A A A A A A A A A A	-16	- 16	10.314.14	101,968	-16	- 56	= 10	24 W 8 7	0-831	10 10	527 W # 13	101 1	NOTWB	a wet	BOW THRUE	CIPH A	Mobur	100 M N
VF:	- 16	18	6	18	-16	- 14	34	12	80	10	1 8.		4/	1	ENCYPINE	PUMP ROOM	VODTICI FWDVDDTIC	
N .		8	- 10	- 10		17	10	. 10	1			4	1			2 105		
		14	-12	9	10.		1.0	1.10	1.4	4		-	5.00			6 %	LOWER VOID THES	01 7

A Bit of Perspective

Dock Gantry Cranes – Target Envelope

Outer Harbor Crane Array

Outer Harbor X434/X435, Mean Tide, 3° list

Potential Crane Modifications

- To be fully capable:
 - Raise X438/X439 by 34', extend by 24'
 - Raise X434/X435 by 32', extend by 17'
- Issues:
 - Mechanical capabilities ropes, drums, drives
 - Productivity drives, motors, speeds, duty cycles
 - Frame structural strength boom, frame seismic
 - Wharf structural strength rail girders
 - Wharf tie-downs and stowage pins
 - Power supply and demand terminal and wharf
 - Cranes may need to be shuffled

Choices

- There are only three possible responses to bigger ships
- 1. Do nothing
 - Keep going with what you have
 - Forego new freight and revenue from big ships
- 2. Modify existing cranes, if possible
 - Raise and extend
 - \$1.0M to \$2.0M per crane, 30 to 60 days of downtime
- 3. Build new cranes
 - \$11.0M to \$12.5M per crane, depending on location

New Terminals in Old Boundaries

- We are being asked to consider the application of new automation technologies in old terminals
- Automation likes nice, rectangular shapes
- Most automation to date has been deployed on new sites, which can be made rectangular
- Existing sites are what they are changing shapes is difficult
- We must work with what we have, and adapt technologies to suit

Greenfield Rectangles are:

- Flexible
- Efficient
- Productive
- Capacious
- Easy to lay out
- Easy to design
- Easy to build
- Lack pesky constraints
- ...and exceedingly rare

Not Everything is a Greenfield Rectangle

A Case in Point: West Basin Container Terminal

Challenges

- No rectangles, anywhere
- Port is rebuilding the wharves to ease navigation and increase crane gauge from 50' to 100'
- Uncertain future access to refinery area
- Split terminal
- And a desire to convert this to a high-performance automated facility for very large container ships

Imposing Rectangular Thinking

Perpendicular to Berth 122?

Perpendicular to KM Boundary?

Parallel to Both Berths?

Rebalanced with KM?

What's a Planner to <u>**Do**</u>?

- There is no obvious "best" solution that perfectly balances:
 - Capacity
 - Productivity
 - Efficiency
 - Phaseability
 - Flexibility to use or not use Kinder Morgan
 - Accessibility from North Yard to rail yard
- Something unorthodox is required...

An Unorthodox Solution

Zipper Grid

- Zipper Grid concept allows yard/truck interface in a very compact space
- Overhead bridge crane, very similar to an ASC trolley, shuffles boxes across the wall: 1 OHBC per six pairs of slots

But will it work?

- Detailed simulation analysis
 - Equipment counts, Productivity
 - Inter-yard transfer performance
 - Congestion relief
 - Resource allocation paradigms
- Detailed phased financial model
 - Equipment
 - Manning
 - Management Labor
 - Capital and Operating Costs, Revenue Phasing
- ...Yes!

Current Layout, 2.2M TEUs

Rail Yard, Berth 126 Yard, to 2.6M TEUs

Dredge, Fill, Berth 122, to 2.9M TEUs

Future Expansion into KM

Future Buildout, 3.3M TEUs

From Past to Future through Present

- Many "Terminals of the Future" will be built atop "Terminals of the Present"
- We must adapt to big ships using big, fast, efficient cranes backed by dense, fast, efficient yards
- We will use our existing terminal resources
- We will reconfigure yards while operating
- We will run "two terminals in one"
- We will have parallel resources (TOS, etc.)
- We will flex manned and automated models
- We will cope with construction

