TraPac Automated Terminal- Port of Los Angeles
Milind Desai, P.E., S.E.

AAPA Facilities Engineering Seminar
San Diego
October 2015
Agenda

• Introduction
• Overview of Automated Stacking Crane Block and Operations
• Infrastructure Design Challenges & Solutions
• Construction Lessons Learned
• Operational Results
• Q & A
CH2M HILL Today

We are an industry leader in consulting, design, design-build, operations, and program management.

• Headquartered in Englewood, Colorado, USA
• More than 24,000 employees
• US$7 billion in revenue
• 100 percent owned by our employees
• Broadly diversified across multiple business sectors
• Performing work in more than 140 countries
• 2015 ENR Ranking – Program Management #1, Ports & Maritime #3, Transportation #3
• Engineer of Record Automated Terminals - TraPac Port of LA, APMT Portsmouth Virginia, Global Container Terminal New Jersey
Port of Los Angeles

🌟 TraPac
Berths 142 – 147
Acronyms

STS = Ship-To-Shore Crane

RTG = Rubber Tired Gantry Crane

ASC = Automated Stacking Crane

SC = Automated Shuttle Carrier
Scope (Phases 1-5)

- 200 Acres (81 Hectares)
- Throughput 1.6 M TEU
- 19 Automated Stacking Blocks
- 2 Mini Automated Stacking Block
- On dock rail yard

Re-Developed Terminal

- Total Equipment:
 - 39 – 8 wide ASCs
 - 1 – 10 Wide ASC
 - 28 – Automated Shuttle Carriers
 - 3 – ARMGs for rail yard
Fully Operational Berths 144-145
Automated Equipment

Automated Shuttle Carrier (SC)

Automated Stacking Crane (ASC)
ASC Block Components
Berths 144-145 Interchange Areas and Container Stacking Area

Landside Interchange Area Container Stacking Area Waterside Interchange Area
Crane Rail Foundation

- European Rail Section (AS 86)
- Flash Butt welds vs. Thermite
- Ballasted Rail System
- Lower initial capital cost
- Ballasted Track provides Cross Drainage
- Minimizes Impact to Existing Utilities
Objective:

1) Compliance with City of Los Angeles Standard Urban Stormwater Mitigation Plan (SUSMP)

2) Drain site without affecting precision of ASC equipment

3) No infiltration due to chemically impacted soil
Fire Protection System

- Maintenance Lanes (3 m) Access for mechanics and emergency vehicles only
- Standpipes with valves along service and maintenance lanes with outlets every 46 m
- Heat sensor cameras placed at each 30 m HMP along perimeter
- Fire hydrants at 122 m spacing at HMP along perimeter
- Air lock areas for inspection of leaking containers
Electrical Infrastructure

Berths 144-145
- 14,000 ft of Duct Bank - Med Voltage (12.47 KV), low voltage (600 V), and communications (Fiberoptic, Ethernet, WiFi, RFID, OCR) duct bank.
- 124 Reefer Plugs
- Step up transformers
- Tight space of ASC blocks present challenge.
- Identify all conduits early on
- Install the conduits stub outs, pull boxes, manholes, and pads precisely
Unique Features at TraPac

• Fully automated both waterside & landside ASC block operations
• SCs deployed in conjunction with ASCs Blocks
• Containers transferred directly from waterside area to on-dock rail yard
• Two mini ASC blocks for hot cargo
• SCs uses magnets in pavement for navigation
Video-Automated Operations at Berths 144-145
Challenges

• Irregular Shaped Terminal
• Integrate Crane Equipment, Serving Utilities, Operations & Infrastructure Design
• Maintain Terminal Operation During Construction
• Existing Underground Utilities & Chemically Impacted Soil
• Meet Precise Crane Manufacturer Parameters
• Power System Load Estimation & Infrastructure
Irregular Site Shape Dictates ASC Block Layout
Collaborative approach between POLA, CH2M HILL, TraPac, and Cargotec leads to operations, equipment, & infrastructure design that is integrated.
Phasing and coordination with TraPac helps maintain shipping operation

Phasing of Construction Activity

Berth 142-147 Active During Construction
Construction Lessons Learned

- Construction Sequence of Maintenance Aisle

- Accurate Layout of 14,000 ft of Duct Bank Backbone
- Naming Convention of Conduits
- Electric Utility Coordination on Power Supply and Protection.
- Plan the Power Energization and Commissioning Timeline

- Allowance for Crane Movement, Rail Placement and Appurtenances
- Add Survey as a Separate Bid Item
Operational Results

OPERATIONAL RESULTS

The operational data in Table 1 for the five ASC blocks at Berths 145-147 are based on the second quarter of 2015.

Table 1. Operational Data.

<table>
<thead>
<tr>
<th>Throughput</th>
<th>Planned/Target</th>
<th>Actual</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall (5 Blocks)</td>
<td>250,000 moves per year</td>
<td>200,000 moves per year</td>
<td></td>
</tr>
<tr>
<td>Landside Interchange Area</td>
<td>12 to 14 moves per hour per block</td>
<td>9 moves per hour per block</td>
<td>When automated truck handling is activated, the throughput is expected to meet the planned criteria.</td>
</tr>
<tr>
<td>Waterside Interchange Area</td>
<td>18 to 20 moves per hour per block</td>
<td>12 to 14 moves per hour per block</td>
<td></td>
</tr>
<tr>
<td>Ship-to-Shore (STS) Crane</td>
<td>27 moves per hour</td>
<td>20 moves per hour</td>
<td>Limited by number of Shuttles. At times, STS has to wait for shuttles. TraPac is working on better synchronization between crane drivers and shuttles. Also, the STS cranes are not dual hoist. Therefore, they are limited on drop-off/pickup lanes for shuttles.</td>
</tr>
</tbody>
</table>
Acknowledgement

Port of Los Angeles