Asset Management for Deepdraft Navigation Channels O&M

Ned Mitchell Research Civil Engineer ERDC-CHL Vicksburg, MS

AAPA Harbors and Navigation Committee Meeting Feb. 10th, 2015 Port of Miami

US Army Corps of Engineers.

O&M Dredging and Asset Management

- Given constrained funding, objective is to maximize the efficiency of the Marine Transportation System (MTS) nationwide:
 - ► 300+ navigation projects regularly maintained
 - Channel depth-utilization considerations
 - ► Dredging cost tradeoff decisions → work package details
- Corps' Asset Management initiative is accounting for these and other issues within its deep-draft channels PDT.

O&M Dredging and Asset Management

Components of technical approach:

- Digitized, hi-res channel surveys for calculating dredging volumes (e-hydro)
- Localized shoaling forecasts to capture time component of dredging project management (CSAT)
- Detailed Waterborne Commerce data to capture depthutilization and enable advanced analytics (CPT)
- Proxy BCRs to compare (proposed) work package efficiency in a straightforward manner (via CPT)

Detailed Shoaling Data

Analysis on 10' x 10' grid
Elevations
Avg/max/min shoaling rates

Innovative solutions for a safer, better world

BUILDING STRONG®

Shoaling Rate

CORPS OF ENGINEERS

U.S. ARMY

e-Hydro – bathymetry raster

Survey pairs – compare multiple surveys between dredging events

Survey pairs are differenced and time between each event is used to find the average rate of change on the 10'x10' grid.

Cumulative Dredging Requirements

Cumulative Dredging Requirements

CPT/e-Hydro/CSAT Integration

		Quantity	Quantity (CY) at different future times to reach specified depth							
Target Elev, ft (MLLW)	Dredge Cut ft (MLLW)	Now	ð mos.	12 mos.	18 mos.	24 mos.	30 mos.	36 mos.		
-45	-47	171,608	23,772	790,205	1,207,360	1,625,518	1,999,915	2,230,219		
-43	-45	65,202	21,973	502,672	850,467	1,203,905	1,517,865	1,697,573		
-41	-43	30,921	11,59	313,894	606,834	915,851	1,195,519	1,353,134		
-39	-41	14,615	52,706	184,026	421,057	691,288	939,472	1,080,938		
-37	-39	5,801	26,432	102,175	275,375	509,354	730,962	858,071		
-35	-37	1,107	12,820	52,997	169,619	358,176	556,497	672,752		
-33	-35	0	5,187	27,232	SAT hr	vides ¹ tl	407 405	515,969		
-31	-33	0	905	13,695	54,885	146,987	282,359	381,179		
-29	-31	0	13	5,812	sugaing	y ioreca	SIS 182,608	266,129		
-27	-29	0	2	1,271	15,452	45,198	107,254	172,888		
-25	-27	0	0	172	7,243	21,502	56,055	99,746		
-23	-25	0	0	48	2,312	9,467	24,086	46,945		
-21	-23	0	0	7	528	3,256	6,834	15,480		
-19	-21	0	0	0	39	317	621	1,630		
-17	-19	0	0	0	0	0	0	0		

eHydro does this

Galveston Entrance Channel and Harbor

Channel Portfolio Tool (CPT)

Data SIO, NOAA, U.S.

Via Waterborne Commerce data, CPT can generate depth-utilization profiles showing the distribution of cargo across the range of maintained depths for any system of navigation channels.

Cumulative Details Tons (Transit) for Main Waterfront (mile 0 To Mile 1) (376400) 2008

Commodity Details Tons (Transit) for Reserved Channel (mile 0 To Mile 1) (374900) 2008

DUILDING SIKUNG®

Innovative solutions for a safer, better world

GOG

Origin-Destination Freight Flows

The O-D flows within the WCSC data allow the Corps to evaluate navigation project interdependencies.

This in turn allows for systems-based optimization approaches.

Innovative solutions for a safer, better world

BUILDING STRONG®

CPT Depth-Utilization

BUILDING STRONG®

CPT Depth-Utilization

Depth-utilization via CPT

BUILDING STRONG®

Columbia River (near Astoria, OR)

			Quantity (CY) at different future times to reach specified depth								
Target Elev, ft (MLLW)	Dredge Cut, ft (MLLW)	Now	6 mos.	12 mos.	18 mos.	24 mos.	30 mos.	36 mos.			
-45	-47	312,962	1,527,520	3,795,422	6,661,576	9,912,000	13,381,110	16,874,650			
-44	-46	312,962	1,527,520	3,795,422	6,661,576	9,912,000	13,381,110	16,874,650			
-43	-45	312,962	1,527,520	3,795,422	6,661,576	9,912,000	13,381,110	16,874,650			
-42	-44	180,540	977,219	2,872,732	5,496,566	8,567,152	11,903,859	15,304,755			
-41	-43	48,118	426,918	1,950,042	4,331,555	7,222,303	10,426,608	13,734,860			
-40	-42	27,629	248,849	1,377,110	3,445,603	6,112,310	9,147,867	12,329,802			
-39	-41	7,140	70,779	804,178	2,559,651	5,002,317	7,869,126	10,924,743			
-38	-40	4,214	40,268	533,256	1,965,286	4,145,992	6,808,288	9,707,811			
-37	-39	1,287	9,757	262,333	1,370,920	3,289,668	5,747,450	8,490,879			
-36	-38	724	5,673	160,583	1,006,025	2,668,627	4,910,082	7,474,515			
-35	-37	160	1,589	58,832	641,129	2,047,587	4,072,715	6,458,151			
-34	-36	80	895	34,177	445,102	1,610,423	3,424,647	5,631,585			
-33	-35	0	201	9,523	249,075	1,173,259	2,776,579	4,805,020			
-32	-34	0	103	5,598	164,495	889,617	2,283,336	4,137,170			
-31	-33	-	6	1,673	79,915	605,975	1,790,093	3,469,321			
-30	-32	-	3	1,065	51,076	440,680	1,435,445	2,935,180			
-29	-31	-	-	457	22,237	275,386	1,080,797	2,401,040			
-28	-30	-	-	281	14,037	195,155	841,539	1,991,483			
-27	-29	-	-	105	5,838	114,924	602,281	1,581,926			
-26	-28	-	-	54	3,922	80,042	453,954	1,282,898			
-25	-27	-	-	3	2,007	45,160	305,627	983,870			
-24	-26	-	-	1	1,356	31,075	225,913	775,127			

Columbia River (near Astoria, OR)

BUILDING

		Time until Dre	dging Tal	ces place	(Years)				
	Target Elevation (ft)	1	1.5	2	2.5	3	3.5	4	
	45	21.821	11.368	6.832	5.040	4,130	3,599	3.278	
	44	21.821	11.368	6.832	5.040	4.130	3.599	3.278	
	43	21.821	11.368	6.832	5.040	4.130	3.599	3.278	
	42	26.980	15.868	8.649	5.945	4.673	3.965	3.546	
	41	35.778	26.927	11.954	7.314	5.419	4.439	3.880	
	40	34.206	31.812	14.437	8.168	5.747	4.558	3.900	
	39	26.026	32.891	15.580	7.658	4.982	3.781	3.148	
	38	23.572	31.945	18.363	8.654	5.329	3.899	3.170	
	37	22.254	32.557	25.002	10.924	6.166	4.286	3.376	
	36	20.493	30.290	27.720	12.778	6.841	4.570	3.507	
_	35	18.157	27.119	30.881	15.535	7.630	4.810	3.566	
	34	15.466	23.143	28.063	16.561	7.959	4.803	3.458	
	33	12.328	18.481	23.971	17.640	8.183	4.625	3.199	
	32	9.286	13.924	18.264	15.543	7.593	4.140	2.769	
	31	7.270	10.905	14.467	14.660	7.740	3.994	2.549	
	30	5.982	8.973	11.926	12.968	7.729	3.946	2.440	
	29	4.629	6.944	9.246	10.850	7.605	3.819	2.257	
	28	3.869	5.803	7.731	9.281	7.321	3.842	2.219	
	27	3.341	5.011	6.680	8.209	7.453	4.166	2.326	
	26	2.792	4.188	5.583	6.899	6.754	4.137	2.303	
	25	2.317	3.475	4.633	5.757	6.121	4.230	2.345	
	24	1.961	2.942	3.922	4.883	5.382	4.091	2.359	
	23	1.579	2.369	3.158	3.939	4.507	3.842	2.340	
	22	1.355	2.033	2.711	3.383	3.925	3.597	2.360	
0	21	1.206	1.810	2.413	3.014	3.545	3.522	2.547	
G S	20	1.000	1.500	2.000	2.499	2.955	3.066	2.405	r a safer, better world

Texas City Approach Channel

CORPS OF ENGINEERS

Number 1 of 1 Baisson Numb 23.8 /Dex 2018

9,900

3.300

Texas City Approach Channel

		Time until Dre	ime until Dredging Takes place (Years)						
	Torgot	1	15	2	25	3	3.5	4	
	Target	1	1.5	2	2.5	3	3.5	4	
	Elevation (ft)								
	45	29.780	33.293	33.286	32.103	30.798	29.711	28.932	
	44	33.343	38.859	39.396	38.043	36.305	34.736	33.522	
	43	37.828	46.603	48.197	46.626	44.157	41.757	39.796	
	42	38.561	49.827	53.110	52.169	49.702	47.033	44.751	
	41	39.578	53.944	59.650	59.750	57.371	54.339	51.590	
	40	39.395	55.069	62.903	64.241	62.385	59.479	56.637	
	39	29.471	42.303	50.100	52.345	51.539	49.542	47.349	
	38	24.186	35.129	42.638	45.605	45.510	44.107	42.394	
	37	19.914	29.275	36.467	40.037	40.581	39.714	38.434	
	36	15.738	23.268	29.444	32.996	34.039	33.648	32.773	
	35	12.886	19.160	24.643	28.227	29.697	29.695	29.141	
	34	9.591	14.299	18.545	21.598	23.108	23.422	23.170	
	33	7.996	11.954	15.636	18.527	20.185	20.770	20.734	
	32	6.692	10.016	13.166	15.759	17.429	18.189	18.355	
	31	5.438	8.148	10.764	13.019	14.627	15.500	15.829	
	30	4.638	6.952	9.207	11.210	12.738	13.668	14.127	
	29	3.996	5.992	7.955	9.751	11.211	12.190	12.765	
	28	3.124	4.685	6.227	7.668	8.879	9.765	10.332	-
Twi	27	2.251	3.377	4.493	5.558	6.483	7.214	7.718	Γ
	26	1.719	2.579	3.434	4.259	4.994	5.601	6.052	
BUILDING ST	25	1.170	1.755	2.338	2.907	3.428	3.875	4.232	world

MVN - Calcasieu

	Average Rate	Average		. A
Reach_ID	(ft/yr)	Volume (CY/yr)	Dredge Interval, yrs	E Con
CR_52_CLI_01	0.92	213,622	0.58	
CR_53_CNI_01	2.05	150,288	0.62	-
CR_50_DE1_01	7.75	1,254,602	0.35	
CR_51_DE2_02	2.69	442,499	0.37	or-
CR_01_UPR_01	1.80	199,555	0.38	
CR_02_UPR_02	1.98	243,007	0.32	
CR_03_UPR_03	11.12	1,236,971	0.37	
CR_04_UPR_04	6.95	732,436	0.35	
CR_05_UPR_05	6.51	1,034,526	0.25	T
CR_06_UPR_06	4.23	521,544	0.30	Ċ,
CR_07_UPR_07	4.61	519,816	0.30	and the
CR_08_UPR_08	6.52	676,079	0.42	la secondaria
CR_09_UPR_09	3.78	427,084	0.39	R
CR_10_UPR_10	5.24	496,527	0.47	
				1200

Quantities are only displayed for the upper portion of the Calcasieu.

BUILDING STRONG®

Calcasieu Outer Bar

BUI

	Time until Dre							
Target Elevation (ft)	1	1.5	2	2.5	3	3.5	4	
45	6.588	6.396	5.899	5.484	5.187	4.980	4.830	
44	6.588	6.396	5.899	5.484	5.187	4.980	4.830	
43	6.588	6.396	5.899	5.484	5.187	4.980	4.830	
42	6.573	6.381	5.886	5.472	5.175	4.969	4.819	
41	9.443	8.893	7.828	6.964	6.351	5.926	5.622	
40	16.754	14.663	11.678	9.572	8.217	7.337	6.740	
39	18.119	17.124	13.156	10.297	8.490	7.328	6.549	
38	20.439	22.994	16.191	11.491	8.792	7.168	6.138	
37	15.581	19.799	16.328	11.655	8.597	6.782	5.639	
36	13.097	19.245	20.704	14.959	10.255	7.620	6.032	
35	9.306	13.794	15.980	13.277	9.503	6.958	5.374	
34	7.403	11.071	13.913	14.069	10.867	7.744	5.729	
33	5.928	8.877	11.333	12.150	10.367	7.773	5.764	
32	4.764	7.142	9.267	10.595	10.302	8.366	6.230	
31	3.754	5.630	7.359	8.564	8.769	7.663	5.975	
30	3.096	4.644	6.116	7.249	7.862	7.546	6.295	
29	2.413	3.620	4.787	5.720	6.335	6.366	5.624	
28	1.925	2.888	3.836	4.621	5.231	5.535	5.257	
27	1.385	2.077	2.762	3.351	3.831	4.146	4.100	
26	1.146	1.719	2.289	2.797	3.230	3.579	3.706	
DI 25	0.890	1.335	1.778	2.184	2.534	2.841	3.014	tter world

Dredge Work Package Formulation

			Time Unt	Time Until Dredging Takes Place (Years)					
	Optimal Target								
	Depth (ft)	1	1.5	2	2.5	3	3.5	4	
Calcasieu Outer	38	20.43943	22.99373	16.1911	11.49139	8.791689	7.167862	6.138435	
Calcasieu Gap	40	35.03011	52.46583	68.87481	82.36058	90.64498	94.80497	94.14798	
					-				

• Remaining development tasks include CPT interface enhancements to give project dredging managers the capability to formulate efficient work packages.

64.24062 62.38521 59.47904 56.6367 41.97186 39,26637 5194 37 47005 36.23801 30.19148 33,13396 32.6626 30.26347 5794 6.888865 8.034747 9.174922 741193 262.7408 230.1306 197.8446 170.9211 73.73789 69.79972 66.44992 63.59281 2,788178 2.926068 2.876293 2,961408

Cargo is *shared* between and across navigation projects.
CPT Rollup capability ensures no "double counting."
Dredging requirements are additive, so straightforward

summation of CY to ensure a given target depth.

CPT Dredge Work Package Rollup Example

	Reach Name	9	Target Elev.	Tons Supported	Now	1 year	2 years	3 years
	Calcasieu Ou	uter Bar	42	17.1 M	23.1	28.7	24.5	19.2
	Calcasieu Lo	wer Reach	42	16.3 M	21.4	26.9	23.5	18.7
	Calcasieu Mi	ddle Reach	41	16.3 M	19.3	24.3	28.4	31.0
	Calcasieu Up	oper Rea	40	15.8 M	14.5	19	18.6	15.2
Lake Charles Termina		38	14.6 M	13.2	18	23.4	21.2	
Lake Charles Turning sin		36	2.3 M	12.9	19	26.7	23.1	
	Work Package Options	Target Elevations	Tons Supporte	Now d	1 year	2 yea	nrs 3y	ears
	1	42, 42, 41	17.1 M	12.3	14.3	12.2	9.7	,
	2	42, 42, 40	14.8 M	9.6	10.7	11.1	10	.3
	3	41, 41, 40	11.9 M	6.7	7.2	6.9	6.2	2

BUILDING STRONG®

Other Performance Metrics and Advanced Analytics

- We are not limited to counting stats such as tons and cargo value.
- Benefits, however they are defined, can now be directly compared to these detailed, quantitative dredging cost estimates.
- Benefits can include commodity-specific freight corridors and estimates of shipping cost savings.

FRDC

Northeast fuel shipments

Lake Michigan

Google earth

Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image Landsat US Dept of State Geographer © 2015 Google

BUILDING STRONG_®

Innovative solutions for a safer, better world

Cockeum Town

Ottav

Lake Michigan

Soybeans

Data SIO, NOA.A, U.S. Navy, NGA, GEBCO Image Landsat US Dept of State Geographer © 2015 Google

BUILDING STRONG_®

Innovative solutions for a safer, better world

Nassau

Cockeum Town

Washington

BUILDING STRONG_®

BUILDING STRONG_®

Tons per voyage analysis: National Summary

Innovative solutions for a safer, better world

BUILDING STRONG_®

Tons per voyage analysis: National Summary

Innovative solutions for a safer, better world

BUILDING STRONG_®

Vessel Draft Sensitivities

BUILDING STRONG_®

Lower Mississippi River Average voyage distances, 2007-2008

US Census data on foreign countries of origin/destination for Lower Mississippi River used to estimate average distance per voyage:

Sample Countries of Origin/Destination	Distance (mi)
Venezuela	1750
Estonia	6950
Mexico	650
Brazil	3750
Colombia	1650
India	13300
The Netherlands	5600
Spain	5100
- United Kingdom	5300
Egypt	7300

Α	verage Voyage Distan	ces	
	Tanker Imports:	Dry Bulk Imports	:
	3640 mi	4853 mi	
	Tanker Exports:	Dry Bulk Export:	
	7311 mi	6574 mi	

BUILDING STRONG_®

Questions?

Asset Management for Deep-draft Navigation Channels O&M

Ned Mitchell, PhD Kenneth.n.mitchell@usace.army.mil 601-634-2022

