

Computer with a Lens.... Intelligence in cameras translates to

Anthony Incorvati

Axis Communications

saving time and money

July 20, 2016

www.axis.com

Axis – continuously driving innovation

1996

World's first network camera

World's first video encoder

1999

World's first network video chip

2004

First MPEG-4 and Motion JPEG compression camera 2008

First H.264 compression standard for network camera 2009

First network cameras with HDTV, and with remote focus & zoom functions

2010

First thermal network camera

Lightfinder technology

2012

Unique highperformance WDR camera 2012

AXIS Camera Companion: unique small installation solution

2015

Open standard network loudspeaker & Open IP-based door station

2012

First network camera with active cooling

2013

Physical Access Control 2015

Zipstream technology & Sharpdome technology

Low light Technology

Extreme light sensitivity

Wide Dynamic Range: Back & Blinding Light conditions

Enables extreme level of detail in both dark and bright areas of a scene

High-end security camera with conventional WDR

Camera with WDR-Forensic Capture

Apps for security cameras?

Open Camera Application Platform

Microprocessor

Distributed intelligence strategy

- > Analytics "at-the-edge"
 - Processing significant portions of video @ camera
 - Streaming event metadata and only required video

> Benefits

- Overcome limitations of centralized intelligence
- Reduce bandwidth and storage consumption
- Reduce system cost and complexity
- Design truly scalable deployments

Uses of Edge intelligence

> Classic Uses:

- Vehicle / People counting
- Traffic incident detection
- License Plate Recognition
- Queue / Dwell Managment
- Heat mapping
- > Newer Use Examples:
 - Perimeter / long range detection
 - Smoke & Fire Detection
 - Explosion Detection
 - Flare Analysis
 - Facial Expression Analysis

Detection, field of view relation

Area protection – not only perimeter

Electronic Image stabilization (EIS)

Without EIS With EIS

Bitrate

- > Low Bitrates are appreciated
- > Bitrate consumption is unpredictable
- > Low in static scenes
- > Higher in scenes with...
 - ... large motion share
 - ... high image complexity
 - ... a high noise level

GOAL: How to control the bitrate and make it predictable?

Setting MBR – Maximum Bitrate

- > Artificial cap for the dynamic bitrate
- > Intention: Make bitrate controllable + predictable by adding an <u>upper limit</u>.
- > Everything above the limit is compressed harder in order to lower the bitrate
- > Everything below is untouched

PROBLEM: compression level is permanently adjusted even if <u>actual bitrate</u> is going above the limit or falls again below

Manually setting Region of interest compression (Static ROI)

- > Different zones manually defined with higher compression
- > Zones are static once defined
- > Problem: Difficult to predict / define an irrelevant area in professionally deployed camera
 - entire image could be typically relevant
 - event may happen in a human predicted irrelevant area, which is no good.
- So, setting MBR or static ROI is not a good thing!
- > Leave the intelligence to the algorithm!

Algorithm off - Bitrate:

Algorithm high - Bitrate:

Algorithm off - Bitrate: 15442 [kbps] Algorithm high - Bitrate: 1950 [kbps]

Large bandwidth savings due to noise reduction

.... in the H.265 context

Compression Algorithm summary

- > Highest impact: Static and high noise scenes
- > Reduce storage & bandwidth by an avg. 50%+
- > Will not add delay
- > Dynamic GOP
- > Does not guarantee a certain bitrate reduction nor apply limits to the bitrate
- > Algorithm prevents relevant details from being destroyed

