

Marine Terminal Management Training Program TRENDS IN THE DESIGN AND OPERATION OF CRUISE TERMINALS

September 2015

Design and operation process

1.0 Determine the market you serve and the growth

- 2.0 Establish facility demand
- 3.0 Determine your design vessel
- 4.0 Establish economic targets
- **5.0** Development strategy
- 6.0 Set performance standards
- 7.0 Terminal design
- 8.0 Transport design
- 9.0 Marine design

10.0 Waterfront integration

POTENTIAL

Expansion

CRUISE PASSENGER GROWTH

NORTH AMERICA CRUISE TRAFFIC

TOP 25 WORLDWIDE ATTRACTIONS

CRUISE INDUSTRY COMPANIES

Ship orders as of 2014

Passengers

Ship orders as of today

Vessels

Passengers

Average orders over the 10 year cycle

FORECAST METHODOLOGY

- Worldwide forecast
- Market capture of North America
- Market share of US
- Market share to Port
- Market share of terminals

FORECAST WORLD CRUISE GROWTH

NORTH AMERICAN CRUISE GROWTH

Keys

- Growth is not unlimited or linear
- Growth occurs in steps as capacity is added
- Lines tend to compete with each other at the same port, therefore causing large and fast increase
- There are glass ceilings at each port
 - Growth will diffuse to many ports as the lines continue to globalize
 - Lines do not compete with themselves
 - Capacity issues

REGIONAL HOMEPORT PASSENGERS (MULTI-DAY)

FLORIDA HOMEPORT PASSENGERS

North America homeport terminal demand

- If we add 100 more ships in the next 15 years
- Assume 50% to other markets
- These 50 ships will require = 75 homeport berths/week
- If 40% are seasonally deployed that translates into 105 berths/week
- There is a need of 20 to 25 terminals

FACILITY DEMAND

MAJOR FACTORS

- Natural potential for development
- Timing of cruise line expansion and strategy
- Interline competition
- Seasonality (by month)
- Daily fluctuations

Seasonality

WARM WEATHER SEASONALITY (LOS ANGELES)

COLD WEATHER SEASONALITY (ALASKA)

YEARLY SEASONALITY (SF 2009)

DAILY SEASONALITY

METRIC - BERTH USE (PASSENGERS PER YEAR)

Berth utilization

ba

EXISTING GROWTH DEVELOPMENT MODEL

- Ports wait for the cruise line to call
- Then you have at best 24 months to deliver a facility

• But.....

 Terminals are now much more complicated, expensive and difficult to execute

Planning is essential

AVERAGE PASSENGERS PER SHIP BY YEAR OF CONSTRUCTION

AVERAGE SHIP LENGTH BY YEAR OF CONSTRUCTION

PERCENT OF SHIPS OVER 1,000 FEET LOA

IMPACT OF LONGER SHIPS

WHERE IS THE SHIP BUILDING GOING?

- Reacting to the market
- Reacting to the economics of markets
- Driven by a handful of companies

Reacting to the unknown

PAST SHIP DRIVERS - PHYSICAL

- The width of the panama Canal
- The air-draft of the Verrazano Narrows and Golden Gate bridges
- The draft of smaller harbors (for nontransatlantic)

Future drivers - market and economies

- More passenger amenities
- Better sales yields
 - Outside cabins larger perimeter
 - Balconies
 - Grander atriums
- Logistics
 - Distribution of passengers
 - Boarding and disembarking
- Better economics
 - Crew to passenger ratios
 - Power / fuel consumption

Design vessels

Туре	Design Vessel 1980s (Panamax)	Design Vessel 2000 (post-Panamax)	Design Vessel 2020 (x-Panamax)	
Passengers	2,000 to 2,600	3,000 to 5,000	>5,000	
Crew	850	<1,200	>1,500	
GRT	Up to 100,000	100,000 to 140,000	> 150,000	
LOA (ft)	900 to 985	985 to 1,100	1,150 to 1,300	
Beam (ft)	Up to 118	Over 118 (gen. 130 to 165)	150 to 200+	
Draft (ft)	Up to 28	28 to 36	28 to 32	
Air Draft (ft)	Less than 195	Up to 210	210+	

Provide flexibility to absorb changes for each cruise line brand

ECONOMICS

Port costs

Revenue distribution

POTENTIAL REVENUES

Establishing budgets

- Understand revenue and cost structure
- Lines drive tariffs competitively
- It is not "whatever it costs" the lines will pay
- Different solutions and issues
 - Start-ups with low volumes
 - Legacy ports with obsolete infrastructure
- Perform an affordability test at the start

NORTH AMERICAN PORT REVENUES (US\$/PAX)

EUROPEAN PORT REVENUES (US\$/PAX)

OPERATIONAL COST OF DIFFERENT TERMINALS (US\$)

Averages

Revenues

- On average the total per passenger charge in the US is \$14.52
- This varies widely by region
 - West coast is lowest at \$9.01
 - North Atlantic is highest at +\$19.00
 - Legacy ports average at \$15.51
- Costs
 - Operating costs of a terminal varies highly between \$3.00 per passenger to over \$12.00 per passenger
 - Ports with average operations can operate with a 50:50 ratio of costs to revenues
 - Very sensitive to volumes and historic labor arrangements

Net revenues

 This combination of revenue and costs create a wide disparity between ports as to their financial performance

RATE VS VOLUME - CARIBBEAN

METRIC - PORT GROSS REVENUES PER BERTH (US\$)

DEVELOPMENT STRATEGIES

COMPETITION OR COOPERATION?

- Ports should offer complimentary experiences
- Variety
 - Active
 - Passive
 - Cultural
 - Eco-tourism
 - Shopping
- Multi –national
- Marquee value

TINERARIES - BACKBONE OF THE INDUSTRY

- Lines are focused on cruise itineraries
 - easy
 - profitable
 - sell to cruise consumers
- Manageable distances to reduce speeds and fuel consumption
- Creation of cruise itineraries that fit within consumer vacation patterns
 - mini-breaks
 - week long cruises

DISNEY'S CASTAWAY CAY

Grand Turk Cruise center

MAHOGANY BAY, ROATAN - CARNIVAL

HOMEPORTS

- Delivers terminal and harbor
- Services vessels
- Handles baggage
- Handles passenger transfers
- Linked to a major airport with significant air carrier capacity
- Although in the US the drive market is now critical to passenger delivery
- Central to fuel efficient itinerary pattern(s)

THE EVOLUTION OF THE CRUISE TERMINAL

CRUISE TERMINAL AREA COMPARISON (mt²)

DEVELOPMENT COSTS

	Canaveral		PEV	Miami		
	CT6	CT1	18	D		
Embarkation						
Check-in	7,127	18,000	36,125	16,984		
Lounge / VIP	11,582	33,500	51,639	19,770		
Support	28,295	19,000	43,313	11,637		
Security	7,889	15,600	9,708	6,664		
Subtotal embarkation	54,893	86,100	140,785	55,055		
Disembarkation						
Baggage	34,377	60,000	63,625	34,871		
Customs / Immigrations	12,914	15,124	10,705	13,281		
Support	5,378	28,200	32,620	8,365		
Subtotal disembarkation	52,669	103,324	106,950	56,517		
Grand total	107,562	>200,000	247,735	111,572		

Realities today

- All ports started with low cost solutions
- Using existing abandoned berths and warehouses
- Low investments

- Those easy solutions are all exhausted
- Few if any berths are available
- Ports are building new

BOTH SCENARIOS OFFER CHALLENGES

Start-up ports

- Lack of certainty
- High start-up costs
- Low volumes
- Slow ramp up to profitability
- Legacy ports
 - Fixing an old terminal could be as expensive as a new one
 - Incremental increases
 - Rare that legacy ports have huge jumps in traffic
 - Usually large incremental costs

HOMEPORT PASSENGER MOVEMENTS - SMALL SHIPS

HOMEPORT PASSENGER MOVEMENTS - TODAY

TRADITIONAL TERMINAL CONCEPT

ALTERNATIVE (TWIN TERMINALS)

ba

2035 PORT OF MIAMI MASTER PLAN UPDATE

ALTERNATIVE B (holosrumies atrows in training his costs

MIAMI, FLORIDA, USA

00-14-2000

INTEGRATED TERMINAL AT WATERSIDE

APRON

Remote parking

APRON

REMOTE TRANSPORTATION

REMOTE CHECK-IN

REMOTE TERMINAL

PERFORMANCE STANDARDS

Critical design issues

Segregate embarkation from disembarkation
Segregate modes of transportation
Provide the latest security – with flexibility
Improve functionality
Luggage handling technology
Integrate terminal into waterfront
Secondary uses

PASSENGER EXPERIENCE

FACILITIES WITHOUT OPERATIONAL TARGETS...

Will not work anymore

- Ships are too big
- Too many passengers

There is no such thing as a small ship or large ship port

- The complexity of the fleet
- The introduction of multiple class vessels
- The mobility of the fleet

All ports must be flexible to support universal designs

NEWEST TERMINALS IN THE NEWEST MARKETS

Performance standards

Passenger experience

- Time
- Flow
- Queues
- Spaciousness
- Direction
- Friendliness
- Cruise company
 - Cost
 - Efficiency
 - Labor
 - Turn around time
 - Passenger experience
- Destination
 - Revenues and costs
 - Volumes

Performance standard

- Establish levels of terminal performance to match frequency or likelihood of demand
- Size the terminal with the Base Design Load (BDL)
 - Time to clear the ship
- Provide processing capacity for Peak Design Load (PDL)
 - Flow and capacity
- Concentrate on throughput improvements to reduce space needs

SIMULATION

BALANCE OF CAPACITIES

Ship

Gangway

Immigration

Vertical circulation

Luggage

Inspection

Ground transportation

Parking

Ship

Gangway

Ship security

Check-in

Vertical circulation

Security

Ground transportation

Parking

TRANSPORTATION

CHALLENGES

- Marine although a challenge it is not the major issue
- Land based activities need the focus and attention

Traffic Impacts

- The main impact is to curbside operations
- The ideal Homeport has curbside capable of:
 - 10 to 16 bus operations simultaneously
 - Separate taxi operations with 30 to 50 meters active curb
 - Separate private vehicle drop-off/pick-up 30 to 50 meters
- Marshalling Area
- Parking highly variable by:
 - Cruise Line
 - Length of Cruise
 - Market
 - Cumulative impact
 - Maturity of market
 - Drive-sail vs. fly-sail composition

PARKING VS. LENGTH OF CRUISE

PARKING VS. CRUISE LINE

MARINE

MANHATTAN PIER 88 (50' – 15 METERS)

SAN DIEGO (35' - 11 METERS)

SEATTLE PIER 66 (60' – 18 METERS)

GANGWAY SYSTEMS

GANGWAYS

- Most terminals have one gangway
- Some lines insist on two gangways
- Some ships must have two gangways
- The Oasis class requests three gangways

PASSENGER AND SERVICE DOORS

а

GANGWAY DESIGN GUIDELINES

- Horizontal Movement
 - Define by the different berthing scenarios
- Vertical Movement
 - Provide for ship sections +
 - Tide
- Stowage
- Cost

DOOR LEVEL ANALYSIS

GANGWAY

IMPACT OF NEW LARGE SHIPS ON GANGWAYS

- Stand off distances are much larger
- Gangways need to be set back more

SHORE POWER

- Several ports are operable
- Reasons for ports or cities
 - Air quality emissions
 - Neighborhoods
- Reasons for the cruise lines
 - Cheaper power
- Challenges
 - Availability of cheap power
 - Cost of installation
 - Cheapest US\$1.6 million for Seattle
 - Others +/- US\$5.0 million

JUNEAU - FIRST INSTALLATION - 2001

SEATTLE TRANSFORMER, MAIN AND SECONDARY METERING

Transformer Capacity: 32.50 Megawatts Seattle Primary Voltage is 27 kv

On Shore Power Trench and Cabling

SEATTLE CABLING SYSTEM - POWER CABLE WINCH

- Seattle and Juneau single berth systems.
- Los Angeles mobile cabling units.
- Typically connection available on one side of vessel only.

ONBOARD POWER HOOK UP

- 3 Power Connectors.
- 1 Supervisory Control And Data Acquisition Connector.
- 1 Neutral Connector.
- Standardization of Cable Connections.

GANGWAY / SHORE POWER COORDINATION

FINANCIALS

FINANCING IMPROVEMENTS

- For ports, usually the most difficult hurdle to overcome
- The industry is full of misperceptions
- In many cases ports relate to use financing models that work for cargo or other development – not the same
 - Allocation of costs
 - Allocation of risks
- Most ports have limited financial resources
- Many Caribbean and Latin American ports do not have total control of excess revenues

BOTH SCENARIOS OFFER CHALLENGES

Start-up ports

- Lack of certainty
- High start-up costs
- Low volumes
- Slow ramp up to profitability

Legacy ports

- Incremental increases
- Rare that legacy ports have huge jumps in traffic
- Usually large incremental costs
- Fixing an old terminal could be as expensive as a new one

Financing realities

- Lines do not want tariff increases
- Lines have supported increases in strategic locations
- Lines have relocated due to cost differential
- Ports have used costs as a differentiator
- Ports in North America have not used visitor industry funds to support investments
 - Asia ports are funded through Tourism

INVESTMENTS

- Does it make sense?
 - Revenues support operations and return
- How do you mitigate risk of the investment?
- How do you stay competitive?
- How do cruise lines participate?
 - Direct investment
 - Underlying guarantees?

- \$50 m per terminal a port needs to net about \$5.0 m per year
- To net about \$5.0 m per year the port needs to gross about \$10.0 m per year
- With 500,000 passengers / berth, the port needs to collect about \$20 per passenger

Sourcing the funds

- Who has access to capital?
- Who can source the capital with the best terms?
 - Port
 - Cruise line
 - Operator
 - Private investor
- Who will take the risk?
 - Cruise line guarantees
 - Sovereign guarantees
 - Public Bonds guarantees

EVOLUTION OF CRUISE LINE INVOLVEMENT

VOLUME GUARANTEES

DIRECT INVESTMENT

VOLUME AND RATE GUARANTEES

AGREEMENTS (PBA'S) - PORT PERSPECTIVE

- Used to support "investment" decisions
- Used to mitigate risk or assist with financing
- Used to obtain other funding
- Ties up the flexibility of the port
- Might result in discounting

Agreements – Lines perspective

- Guarantee preferential berths
- Control or reduce tariffs
- Obtain a competitive edge

NET ANNUAL REVENUES FROM CRUISE OPERATIONS (WITH INVESTMENT)

-

30 YEAR EBITAD - SENSITIVITY TO VOLUMES AND TARIFFS

IRR - RISK ASSESSMENT (THIS IS FOR REFERENCE ONLY)

Traffic		Levels of anticipated traffic		
Tariffs		Low	Target	High
Levels of tariff	Current	NA	NA	ΝΑ
	Rate 1	-6.6%	-4.2%	-2.3%
	Rate 2	1.1%	3.3%	5.3%
	Rate 3	3.8%	6.1%	8.3%
	Rate 4	6.1%	8.7%	11.1%

OPERATIONS

NORTH AMERICAN OPERATION MODELS

Operated by the Port Authority

- Miami
- Port Everglades
- San Diego
- Canaveral
- Tampa
- Boston
- New Orleans

Concession to a terminal operator

- San Francisco
- Seattle
- Los Angeles
- Vancouver
- New York

Terminal operations

• The operator is the building manager:

- Maintenance
- Perimeter security
- Traffic control
- Marketing
- Scheduling
- Housekeeping (Janitorial)
- Sometimes:
 - Gangways
 - Ship spotting

• The actual ship operations are done by the:

- Cruise lines
- Stevedores
- Ground handling

1 - PORT AUTHORITY OPERATED TERMINAL

OWNER

• Port Authority

CRUISE LINE

• Passengers

OPERATOR

• Port Authority

STEVEDORE

 Independent company

GROUND HANDLING

 Independent company

2 - Stand-Alone third party terminal operator

OWNER

• Port Authority

• Passengers

OPERATOR

• TO Company

STEVEDORE

 Independent company

GROUND HANDLING

 independent company

3 - COMBINED TERMINAL OPERATOR + STEVEDORING

OWNER

• Port Authority

• Passengers

OPERATOR

STEVEDORE

• TO Company

GROUND HANDLING

 independent company

4 - TOTAL INTEGRATED MODEL

OWNER

• Port Authority

• Passengers

OPERATOR

STEVEDORE

• TO Company

GROUND HANDLING

TO Company

5 - Outsourced model

OWNER

• Port Authority

CRUISE LINE

• Passengers

OPERATOR

• Port Authority

- Housekeeping company
- Security Company
- Parking company
- Maintenance company

STEVEDORE

 Independent company

GROUND HANDLING

 Independent company

Models

SECONDARY USES

BROADWAY PAVILION

SECONDARY USES

- Between Cruises
- Nighttime
- Combination Uses

GROUND FLOOR EXHIBITION / TRADE SHOW SPACE

INDOOR OPEN SPACE6 METER CLEAR HEIGHT

Multi-Use terminal design

Break out space 5 to 6 meter clear height

WATERFRONT

THE LIFE CYCLE OF THE URBAN/PORT WATERFRONT

In Europe all waterfronts have gone through the entire life cycle

In the new world, most ports have evolved differently skipping the formation period

CRUISE SHIPS ENTER THE MIX

- Bringing an urban use to a older waterfront
- The perfect blend between people and shipping
- But ----- cruise ships are also bringing certain issues that need to be planned
 - Congestion
 - Security
 - Access

Ships are growing faster than waterfronts can be transformed

ACCESSIBLE AND CONTINUOUS

CONNECTED TO THE CITY

MADE UP OF DISTINCT ELEMENTS

UNIFYING DISTINCT AND DIFFERENT DISTRICTS

CASE STUDY - TAMPA BAY

PROPERTY POSITIONING

• Then...

- Channelside properties were acquired with the underlying purpose to serve the cruise industry
- Elements were added to create a tourism destination

Now

- The site is limited for the cruise industry
- Surrounding land uses are residential

SITE ORGANIZATION

Existing cruise terminals

RENAISSANCE PLANNING GROUP BERMELLO AJAMIL & PARTNERS INC

Channelside Master Plan Tampa , Florida EXISTING CRUISE TERMINALS

Option C3

Alternative A - Individual terminals

Alternative B - New central terminal

Alternative C - Joint terminal

Alternative C compact

Channelside waterfront

Channelside waterfront

Cruise district

Cruise district

Cruise district

A multi purpose cruise and conference center

Park district

Channelside maritime park

Channelside Park

Channelside Park

An urban/working waterfront

Multipurpose waterfront

Central waterfront

Office / residential

Central waterfront

• Office / residential -

Hotel / Commercial

Channel harbor

Channelside waterfront

Think strategically

- Community issues
- Port's mission
- Short term solutions without a strategic plan will be short lived and more expensive

Think financially

- How to finance the project
- Stay competitive with the industry
- Not considering pricing in design will create problems

Think functionally

Listen to your users and stakeholders

Think globally

 Don't just compare your port against your neighbor – this is a global business

Focus on all parts of the business

- Operations
- Third party costs to the lines

Marine Terminal Management Training Program TRENDS IN THE DESIGN AND OPERATION OF CRUISE TERMINALS

September 2015

