

Terminal Master Planning: A Key Planning Process Before Design Begins

Present At

AAPA Marine Terminal Management Training Program September 15, 2015

- > Founded in 1945
- A strong reputation throughout our domestic and international operations
- > Engineering News Records Top Firms Lists
 - > #23 Top 500 Design Firms
 - > #32 Top 200 Environmental Firms
- > A Dedicated staff that specializes in port/terminal planning and design:
 - > Port and Terminal Master Plans
 - Bulk Terminal Planning and Material Handling Studies and Design
 - > Container Terminal Designs
 - > Equipment Studies and Specifications
 - > Cost Estimating
 - > Vessel Maneuvering and Hydrodynamic Modeling
 - Dredged Material Management and Navigational Studies
 - > Sustainability and Energy Planning

Terminal Master Planning Is An Important Step in The Design Process

- Terminal Master Planning or "Program Planning" is <u>Not</u> the same as preliminary design;
- > Master Planning is more the "programmatic" phase of a project
- Master Planning a terminal before design starts will allow the Owner to:
 - > Identifying problems and solutions early in the process
 - > Determine project requirements
 - > Finalize the design program and schedule;

An Example Of Program Planning - Port of Houston Barbours Cut Terminal (BCT) Improvements

Project Team: DANNENBAUM

 Prime Program Management Consultant

- Lead Terminal Planners
 Halcrow
- (now CH2MHIII)- Wharf
 Concepts
 CargoVelocity
- Automation Concepts

Project Owner: Port of Houston Authority

Existing Barbours Cut Terminal (BCT) Attributes

- > 175 Acre Terminal
- > 5,000 LF Wharf / 5 Berths (PHA only)

(A 6th Berth was operated by APMT, but now back to POHA)

- Existing STS Cranes 50' Gage
- > CY a combination of RTGs and wheeled storage
- > Empties stored offsite

Landside Interface - Existing Condition - 50 Gage

> Amenities Building mixed in A-Row

Port of Houston Authority (PHA) Stated Operational Goals For The Program

- > Retrofit wharf for 100-gage Quay Cranes (22-Wide) – Can not change existing berth-line!
- > Construct minimum 1,000 FT of new wharf by 2014
- > Densify yard to handle + 2.0 million TEU/yr
 - > RTGs
 - > RMGs
 - > Automated system
- > Return empty depot operations to on-site within BCT

Wharf Operations Studies Early In the Program

> Berthing Concept Study >Berth Capacity Model Results >Wharf Face Operation Study Crane Rail Position Study >Impact of 100 Gage Crane on Yard >Amenities Building Location Study

Berth Capacity

- >Berth capacity model set up to assess multiple berth segments and number of cranes per berth
- Some enhancements were considered to improve productivity in the future
- >Evaluate unit berth capacity under various crane options and apply to the number of berths available

Berth Capacity Based on Crane and Berth Count

BCT Berth Capacity (future crane count)	2.0	2.5	3.0	3.5	4.0
Berth Capacity - 4 Berths (Lifts/year)	993,651	1,213,242	1,422,874	1,623,208	1,814,850
Per Berth Capacity - 4 Berths (TEUs/year)	1,649,460	2,013,982	2,361,970	2,694,525	3,012,651
Total Cranes - 4 Berths	8	10	12	14	16
Berth Capacity - 5 Berths (Lifts/year)	1,242,064	1,516,553	1,778,592	2,029,010	2,268,562
Per Berth Capacity - 5 Berths (TEUs/year)	2,061,825	2,517,477	2,952,463	3,368,156	3,765,813
Total Cranes - 5 Berths	10	13	15	18	20
Berth Capacity - 6 Berths (Lifts/year)	1,490,476	1,819,863	2,134,310	2,434,812	2,722,275
Per Berth Capacity - 6 Berths (TEUs/year)	2,474,191	3,020,973	3,542,955	4,041,788	4,518,976
Total Cranes - 6 Berths	12	15	18	21	24

- > 4 Berths adequate for 2 million TEU range
- > 5 Berth scenario for 3 million TEU range
- > Some flexibility in crane count / berth
- > Yard capacity will drive berth demand

Berth Face Operations Study – Key to setting W/S Rail Location

- Existing berth-line/wharf face location needed to be maintained
- > Need to determine future wharf face activities
 - > Crane power system
 - > Accommodation ladders
 - > Bollards
 - > Future cold iron vaults
 - > Service truck access

Berth Face Operations Study –Studied Various Options

Fill vs No-Fill Alternatives Adds a 6th Berth

Fill vs. No-Fill Capacity Analysis (TEUs)

RTG Layout	Yard Capacity	Berth Capacity	Limiting Factor		
No Fill	3,293,202	2,619,696	Berth		
Fill	3,445,387	3,274,620	Berth		

- > "No Fill" option 4 berths
- > "Fill" option 5 berths
- > Assumes 4 cranes/berth
- > Some additional capacity by adding cranes
- > Roughly +150,000 TEU/yr gained by adding fill and 5th berth
- It was determined that the Project Goals could be met with the No-Fill Option and the area behind the "fill section" could be better used for storage of break-bulk/project cargo.

Landside Interface : Existing Layout - 100 Gage

Retain existing RTG pad layout
Impacts A-Row & Amenities Building
101' from LS crane rail to B-Row

Landside Interface – Options RTGs Back to Back - 100 Gage

- > Back to Back layout
- > 121 ' from LS crane rail to B-Row

Landside Interface - Final

- > Width/Requirements of Amenity Strip
- > RTG Pad location and operation (One Way or Back-to-Back)
- > RTG Pad distance from L/S Rail
- > Width of Passing Lanes
- > Light Pole and Camera Locations

Narrow Amenities Strip

- Separate buildings from RTG pad
- 134 FT wharf apron
- 40 FT amenities strip
- Allows area for:
 - Substations
 - Electrical Equip
 - Misc Truck/equip. parking
 - Boneyard

Yard Layout Alternatives

- > Three alternatives considered:
 - > RTG Dense operations
 - > ASC Perpendicular to the wharf
 - > ASC Parallel to the wharf
- > General layouts provided for discussion
- > Blocks provided for major terminal elements
- > Further detailed layouts required

Camera Pole Study Goals

- > Place camera pole at each RTG pad to view operations
- > Avoid conflicts with yard circulation and RTGs
- > Minimize impacts on terminal footprint
- Investigate using 80 FT high pole at each bypass lane for cameras
- Investigate placing wireless cameras on RTG's

[']E-RTG Concept Study Evaluated Cost and Capacity of E-RTGs vs. Diesel RTGs

> Benefits:

- > 30% lower maintenance costs
- > 80% lower fuel costs
- > 60 80 % emissions reduction

> Constraints:

- > Fixed runway positions
- > Increased civil costs for power delivery and substations

E-RTG Concepts, cont.

> Power Delivery Methods > Motorized cable reel > Conductor bar

Projected Return on Investment

- > Estimated Capital Costs \$33,503,433
 > Operating Cost Savings \$2,923,000/yr
- > Projected Capital Cost Recovery +11 years
- > POHA decided to stay with Diesel RTGs because of similarities with other PHA Terminals (Bayport)

PHA Yard Layout Wish List

- > Maximize RTG storage area
- > Approx 50 acres for empty containers
- > Approx 50 Ag Ramp slots
- > 100 to 300 wheeled slots
- > Wheeled reefer slots initially
- > Dedicated area for VACIS inspections

Further Plan Refinement, cont.

> Modify CY terminal aisles to increase velocity

- > 20 FT truck bypass lanes
- > Dedicated RTG shuttle lane on entry gate aisle (114 FT)
- > N-S Aisles at 80 FT
- > Intra-terminal 4-lane road at 60 FT

Final Terminal Layout

Summary of Final RTG Composite Plan

> TGS Count

- > RTG Loads 11,664
- > Reefer Racks 108
- > Empties 7,346
- > Wheeled Reefers 118
- > Misc Wheeled 249
- > Empty container storage> Ag Ramp slots

+32 acres 50 slots

Automated Staking Crane (ASC) Alternative

- > An Option For Future ASC Operation Was Studied;
- > Would allow for the future conversion of the CY to ASC
- > Buildings and other facilities were located so as to not be impacted by a future conversion
- > A Phasing Plan was developed so the terminal could be converted to ASC by phases

ASC Composite Plan

PHA Phasing Plan Preferences

- > Focus redevelopment on wheeled areas first
- Maximize development of break bulk terminal
- > Accelerate relocation of empty handling op's to BCT
- > Redevelop waterfront RTG pads last
- > Prefer working minimum three pads adjacent with same aisle alignment

RTG Phasing Plan

RTG Phasing Plan

Near Term Construction Phasing Project 1 - Phase 1 (June 2013)

Terminal C5 yard construction (11.7 AC)

Phase addition: + 936 TGS

Phase removal: -720 TGS

Phase Net: + 216 TGS

Cumulative through project: +216 TGS

AAPA Marine Terminal Mana 2015

Near Term Construction Phasing Project 1 - Phase 2 (April 2014)

Terminal C5 operational during Rehab Wharf 1 No change in TGS count (Still +216 TGS)

2015

Near Term Construction Phasing Project 2 - Phase 1 (June 2014)

Phase addition: + 984 TGS Phase removal: -102 TGS Phase net: + 882 TGS Cumulative: +1098 TGS

2015

Near Term Construction Phasing Project 2 - Phase 2 (October 2015)

2015

Near Term Construction Phasing Project 4 - Phase 1 (5-7 Year Plan)

Project addition: + 1056 TGS Project removal: -264 TGS Net: + 792 TGS Cumulative through project: + 3546 TGS

Near Term Construction Phasing Project 5 - Phase 1 (6-10 Year Plan)

Phase addition: + 2952 TGS Phase removal: - 2454 TGS Phase net: + 498 TGS Cumulative through project: + 4044 TGS

INTRATERMINAL ROAD

Near-Term Phasing Project Timeline

Near-Term Construction Phasing

- > Project 1 Rehab Wharf 1 and C-5 Yard (0-3 Year Plan)
- > Project 2 Rehab Wharf 2 and C-4 Yard (0-4 Year Plan)
- > Project 3 Break Bulk Area (3-6 Year Plan)
- > Project 4 C-3 Yard (5-7 Year Plan)
- > Project 5 C-1/C-3 Waterfront (6-10 Year Plan)

			Year										
Project	Phase	Description	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
1	1	C-5 South Yard											
1	2	Rehab Wharf 1											
2	1	C-4 South Yard											
2	2	Rehab Wharf 2											
2	3	Substation & 12 kV Distribution											
3	1	Breakbulk Area											
4	1	C-3 South Yard & C-5 Backland											
5	1	C-1 to C-3 Waterfront											

Near Term Construction Phasing TGS Count by Project

Projects	Project 1	Project 2	Project 3	Project 4	Project 5	Cumulative
TGS Constructed	936	984	1656	1056	2952	7584
TGS Removed	-720	-102	0	-264	-2454	-3540
Project Net	216	882	1656	792	498	4044
Project Cumulative Gain	216	1098	2754	3546	4044	

- > Each project adds more TGS than it removes
- After project is completed, the CY will have 4,044 more TGS than when construction began

AAPA Marine Terminal Management Traini 2015

Another Critical Item Is Laydown Areas and Haul Routes During Construction

Wharf 1 Project Completed Fall 2014 Wharf 2 Advertised For Bid Fall 2015

- Berth 1 Completed;
- 4 New Post-Panama Cranes Delivered;
- Terminal areas 4 & 5
 improvements
 completed
- Berth 2 project currently out for bid

Conclusion

- Program Planning (Master Planning) is a critical element to any terminal development project;
- > There are many "small" items that have to be considered during this planning process;
- > Successful Program Master Planning ensures successful design and construction programs.
- > For More Information:
 - Jim Hunt Principal Port Planner Email: james.hunt@cardno-gs.com

