Electrifying Fleets and Demonstrating Zero Emissions Technology

Brett Oakleaf
Ports/Airports – Lab Lead
September 2018
Key Research Areas

- **Co-optimizing fuels and engines** – R&D to maximize performance, efficiency, and compatibility with existing infrastructure

- **Increasing sustainable mobility** – connected and autonomous transportation innovations for intelligent, efficient, integrated network

- **Reducing expense of battery development** – Computer-Aided Engineering for Electric-Drive Vehicle Batteries (CAEBAT) tool

- **Improving efficiency of heavy-duty vehicles** – commercial truck fuel, engine, thermal management, and powertrain innovation

- **Demonstrating electrification of vehicles** – energy storage for plug-in electric and fuel cell electric vehicles; power electronics; and infrastructure R&D to boost performance and market viability
CONSORTIUM
7 labs, 30+ projects, 65 researchers, $34M* over 3 years.

SMART MOBILITY LAB

Connected & Automated Vehicles

Advanced Fueling Infrastructure

Urban Science

Mobility Decision Science

Multi-Modal Transport

*Based on anticipated funding
Expected EV Growth

37%
Year-over-year national sales growth of EVs in 2016
Source: Insideevs.com

62%
Year-over-year national EV sales growth in 2017
Source: Insideevs.com

2025 Sales Projections

- **Aggressive Scenario:** 3.1M
- **Moderate Scenario:** 1.7M
- **Conservative Scenario:** 1.0M

Aggressive Scenario assumes a CAGR of 29%

2017 to **2025**

- **GTM Research**
- **Bloomberg**
- **IEI / EEI**
- **Navigant**
- **Ann. Energy Outlk**
- **Barclay's**
- **Med**
- **Low**

Sources embedded in chart above
EV – Battery costs

Cost Trends for Lithium-based EV Batteries

Graphite/High Voltage NMC

Si

Silicon/High Voltage NMC

Lithium-Metal or Lithium/Sulfur

Li-Metal Battery projection assumes cycle life, cell scale-up, and catastrophic failure issues have been resolved

System Cost ($/kWh)

2015=$268/kWh
2016=$245/kWh
2017=$219/kWh

5x excess Lithium, 10% Sulfur $320/kWh

$229/kWh

$212/kWh

4V, NMC

4.2V, 10% Si

4.7 Volt

4.7 Volt, 30% Si

1.5x excess Li, 75% S, ~$80/kWh

Year

2012

2014

2016

2018

2020

2022

2024

2026

2028

2030
Combination of fast charge batteries and a network of high capacity chargers can minimize range anxiety, promote the market penetration of BEVs, and increase total electric miles driven.

<table>
<thead>
<tr>
<th>Type of Charging Station</th>
<th>Level 2 220V (~7.2kW)</th>
<th>DC Fast Charger (50kW)</th>
<th>Tesla Super Charger (140 kW)</th>
<th>Extreme Fast-Charging (350kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to charge (for 200 miles)</td>
<td>8 hours</td>
<td>2 hours</td>
<td>25 mins</td>
<td>10-15 mins</td>
</tr>
</tbody>
</table>

Charging Device

EV, Renewable Energy, Buildings, and Energy Storage - Working Together

Developing Systems Integrated Applications

Managed Charging
Evaluate functionality and value of load management to reduce charging costs and contribute to standards development.

Local Power Quality
Leverage charge system power electronics to monitor and enhance local power quality and grid stability in scenarios with high penetration of renewables.

Emergency Backup Power
Explore strategies for enabling the export of vehicle power to assist in grid outages and disaster-recovery efforts.

Bi-Directional Power Flow
Develop and evaluate integrated V2G systems, which can reduce local peak-power demands and access grid service value potential.

Vehicle-to-Grid Challenges

Life Impacts
Can functionality be added with little or no impact on battery and vehicle performance?

Information Flow and Control
How is information shared and protected within the systems architecture?

Holistic Markets and Opportunities
What role will vehicles play and what value can be created?
NREL’s Electric Futures Study (Transportation)

Answering crucial questions about:

- **Technologies**: What electric technologies are available now, and how might they advance?
- **Consumption**: How might electrification impact electricity demand and use patterns?
- **System Change**: How would the electricity system need to transform to meet changes in demand?
- **Flexibility**: What role might demand-side flexibility play to support reliable operations?
- **Impacts**: What are the potential costs, benefits, and impacts of widespread electrification?
Changing Electric Paradigm

ELECTRIFICATION
Critical to long-term carbon goals and will be a relevant decentralized energy resource

Key technologies:
- Electric vehicles,
- Vehicle to grid/home,
- Smart charging, heat pumps

DECENTRALIZATION
Makes customers active elements of the system, though requires significant coordination

Key technologies:
- Energy efficiencies,
- Decentralized storage,
- Microgrids, demand response

DIGITALIZATION
Allows for open, real-time, automated communication and operation of the system

Key technologies:
- Network technologies (smart metering, remote control and automation systems, smart sensors, optimization and aggregation platforms) and customer technologies (smart appliances and devices, Internet-of-Things)

Sources: World Economic Forum
Yard Tractor Usage Map – PANYNJ terminal
Current Announcements

- California CEC approval of 3 utilities $738M investment
- NYPA approval of $250M (throughout state, including airport)
- NJ’s PSEG $300M investment
- VW Electrify America $2B investment
Thank You

Brett Oakleaf
brett.oakleaf@nrel.gov
W - (303) 275-3771
C - (303) 888 - 3605