

US Army Corps of Engineers **Port Resilience R&D:** *using available resources for building better projects*

Katherine Chambers ERDC Coastal and Hydraulics Laboratory

AAPA HARBORS & NAVIGATION COMMITTEE AND QPI MEETING 2-3 October 2019

TAINTER GATE

Resilience Definition

Resilience is a term that encompasses four general concepts: Prepare, Resist, Recover, and Adapt. These four concepts allow for flexibility in application across USACE business lines and project scales.

This lose definition can be a problem when applying these concepts to management or decisions. Assessment can be largely subjective and applied with varied meanings.

US Army Corps of Engineers • Engineer Research and Development Center

Resilience to multiple hazards

Resilience Over Time

Research Challenges

- RESILIENCE = call to action!
- SYSTEM-wide understanding is elusive

Need #1 - Assessment can be largely subjective and the definition of resilience is applied with variable meaning

Need #2 - A need exists for the development of objective tools and applications that Districts (& others) can use to quantify coastal system resilience.

FY19 Appropriations Act resulted in \$292.7M for the Port Infrastructure Development Program to improve port facilities at coastal ports

Five Outcome Criteria:

1. advance technology-supported safety and design efficiency improvements;

2. bring facilities to a state of good repair and improve resiliency

- 3. promote efficient trade in energy resources
- 4. promote exports of manufacturing, agriculture, or other goods; and5. Support the safe flow of agricultural and food products, free of pests and disease, domestically and internationally. Accordingly, the Department

5 September IG changes in red

Construction Supplemental 115-123, Resiliency Specific Line Items				
Project Name	Approved			
BREVARD COUNTY	\$2,000,000			
BROWARD COUNTY	\$2,000,000			
DUVAL COUNTY	\$2,000,000			
LEE COUNTY	\$2,000,000 NO			
NASSAU COUNTY	\$2,000,000			
PALM BEACH COUNTY	\$2,000,000 NO			
SARASOTA COUNTY (VENICE)	\$2,000,000 NO			
ST. JOHN'S COUNTY	\$2,000,000			
Incorporated into C				
Dade County	\$2,000,000			
Manatee County	\$2,000,000 NO			
*All I projects will incorporate resiliency	NO=not ongoing			

US Army Corps of Engineers • Engineer Research and Development Center

Research Approach

Need #1 – Assessment can be largely subjective and applied with varied meanings

Develop assessment methodologies for understanding resilience

- 1. Conduct an inventory of available methodologies and outstanding needs
- 2. Apply resilience definition to ID potential indices and metrics across different scales of analysis
- 3. Highlight outstanding needs for future research

Twelve research projects were funded through the CSR Research Initiative.

US Army Corps of Engineers • Engineer Research and Development Center

ID Assessment Methods

Review Resources & Literature

- Channel Portfolio Tool utilizing Waterborne Commerce Data
- Automatic Identification System Analysis Package utilizing USCG National AIS Database

AIS data to observe regional patterns in vessel traffic

US Army Corps of Engineers • Engineer Research and Development Center

Waterborne Commerce Data

to understand major commodity flows, connectivity and timing

US Army Corps of Engineers • Engineer Research and Development Center

Travel Time Atlas for inland river systems

- Provides historical and near real-time waterway transit times between origins and destinations
- Publically accessible
- Example Applications:
 - Voyage planning
 - River Information Services
 - Multi-modal connectivity
 - Traffic monitoring

POC: Patricia.K.Dijoseph@usace.army.mil

US Army Corps of Engineers • Engineer Research and Development Center

10

Regional Navigation Traffic During Disruptions

ERDC Navigation Data Performance Team: Katherine Touzinsky, Kenneth N. Mitchell, Patricia Dijoseph, Marin Kress

US Army Corps of Engineers • Engineer Research and Development Center

Port Resilience Indices

- Understand baseline function of our navigation systems and the impacts of disruptions
- Evaluate and monitor project performance in real-time

US Army Corps of Engineers • Engineer Research and Development Center

Visualize inter-port flows and connectivity

12

US Army Corps of Engineers • Engineer Research and Development Center

Understand disruption impacts to networks

-Calcasieu CorpusChristi-PortAransas -MatagordaPortLavacaComfort Pascagoula ----PortArthur -PortBeaumont -PortEverglades -PortFreeport -PortGalveston PortHouston PortTexasCity -PortVictoria PortofMiami PortofTampa

13

—SouthwestPass

US Army Corps of Engineers • Engineer Research and Development Center

Research Approach

Need #2 – A disparity exists between published resources on resilience and usable/accessible information for decision support and project planning.

- Create user-driven resources for approaching resilience across different systems
- >DHS & ERDC– Joint Agency Port Resilience Assessment Guide
 - 1. How can the existing body of knowledge on port and maritime resilience be integrated and expanded to create a holistic guide for assessing and improving the resilience of a the MTS?
 - 2. Gain insight on key issues and user objectives of stakeholders who work on the system
 - 3. Develop a user-friendly Guides to resources for assessing the resilience of complicated infrastructure (grey and green) systems

16

Resource Review

Resource Name	Scope	Assessment Tier	Resource Type	Resilience Phases
Self Assesssment - Improving Freight Transportation Resilience in F	MTS Network	1	Methodology	Prepare, Absorb, Recover, Adapt
	MTS Network	3	Data Source	Prepare
Freight Fluidity Study	MTS Network	3	Generic Model	Prepare
State of Hawaii Navigation Information System	Single port	3	Tool	Prepare
Resilience Matrix (Linkov 2015)	Single port	2	Methodology; Academic	Prepare, Absorb, Recover, Adapt
Port Resilience Index	Single port	1	Tool	Prepare, Adapt
INRIX City Guide	All scopes	3	Data Source	Prepare, Absorb, Recover, Adapt
National Performance Management Research Data (NPMRDS)	All scopes	3	Data Source	Prepare, Absorb, Recover, Adapt
Bayesian Network Analysis	Single port	3	Generic Model	Prepare, Absorb, Recover, Adapt
ADCIRC model	All scopes	3	Data Source	Prepare, Absorb, Recover, Adapt
Functional Resonance Analysis Method (FRAM; Hollnagel 2015)	All scopes	2	Methodology; Academic	Prepare, Absorb, Recover, Adapt
	All scopes	3	Generic Model	Prepare, Absorb, Recover, Adapt
Multicriteria Decision Analysis (MCDA)	All scopes	2	Generic Model	Prepare, Absorb, Recover, Adapt
Disaster Resilience Indictators for Benchmarking Baseline Condition	Communities	1	Data Source (?)	Prepare, Absorb, Recover, Adapt
Water Resource Information System (WRIS) Portal	Inland waterway	2,3	Data Source	Prepare, Absorb, Recover, Adapt
Social Vulnerability Index for Disaster Management (SOVI; Flanagan	All scopes	1	Data Source (?)	Prepare, Recover
Disaster Resilience Scorecards (Sands 2015; Williams et al. 2014)	Communities	1	Tool	Prepare, Recover
Marine Cadastre	All scopes	2,3	Data Source	Prepare, Recover
HAZMUS-MH	Single port	3	Tool	Prepare, Recover
Rapid Assessment of Hurricane Damage and Disruption to Interdep	Single port, MTS Network	3	Methodology; Academic	Prepare Absorb, Recover
Assessment and Measurement of Port Disruptions Project (Gabe W	Single port	3	Methodology; Model	Prepare, Absorb, Recover
Disaster Recovery Tracking Tool	Single port	2	Tool	Recover
Community Resilience Planning Guide for Buildings and Infrastruct	Single port	1,2	Tool	Prepare, Absorb, Recover, Adapt
Method to Measure Climate and Extreme Weather Variability to In	MTS Network	2	Methodology	Prepare, Absorb
Economic Decision Guide Software (EDGe\$)	Single port	2,3	Tool	Prepare, Absorb, Recover, Adapt
Cyber-physical Disruption, Mitigation, and Response Catalog (Gabe	All scopes	1	Tool	Prepare, Absorb, Recover
Infrastructure Resilience Quantification Initiative	Single port	3	Example	
COTP Zone Area MTS Recovery Plan Guidelines	Single port	1	Tool	Prepare, Absorb, Recover
Common Access and Reporting Tool (CART)	All scopes	1,2,3	Other	
Predictive Port Resilience Tool to Assess Regional Impact of Hurrica	MTS Network	2	Tool	Prepare, Absorb, Recover

US Army Corps of Engineers • Engineer Research and Development Center

Assessment Method Selection - Tiered Framework

Proceed through tiers until there is adequate information for decision making

US Army Corps of Engineers • Engineer Research and Development Center

UNCLASSIFIED						
Navigation Resources	Single Port	MTS Port Network	Inland Waterway			
Tier 3	 Bayesian Network Analysis (Schultz et al 2016) Assessment and Measurement of Port Disruption (Weaver 2019) 	Outstanding Need for methodologies!	- Bayesian Kernel Critical Infrastructure Analysis of L&D (Baroud 2014)			
Tier 2	 Scenario-based exercise with expert elicitation (many examples) 	 PORT MAPPER (Trepte and Kai 2014) Multiple Port Vulnerability Indicators Methodology (Becker 2018) Regional Resilience Toolkit 	- Collaborative Modeling to Support Adaptive and Resilient Water Resource Governance in the Inland Northwest (King and Thorton 2016)			
Tier 1	- Port Resilience Index (NOAA 2016) - MTS Recovery Plan Guidelines (USCG 2018)	 Supply chain resilience planning Dredge Optimization Scheduler (USACE 2018) 	- Improving Freight Transportation Resilience in Response to Supply Chain Disruptions (NCRFP 2019)			

18

US Army Corps of Engineers • Engineer Research and Development Center

K-STEP PROCESS TO PLANNING FOR COMMUNITY RESILIENC

FORM A COLLABORATIVE PLANNING TEAM

Essential Elements of a Resilience Framework

1) ENGAGE – Lay the Foundation

- Form a collaborative team with leader, team members, key stakeholders
- Understand the situation/system and interdependencies

2) ASSESS – Conduct a Resilience Assessment

- Define goals and objectives of effort (long term performance vs expected performance)
- Select a methodology according to the goals and system

3) ACT – ID and Prioritize Strategies and Decisions

- Evaluate costs, benefits, and value of each action
- Create a stepwise plan

4) FUND – Fund for Action

 Resilience Dividend – enable better withstand and recover from disruptions AND improves normal operations by lessening chronic stressors

5) MEASURE – Evaluate Results and Refine Methods

- Revisit actions to see if they are improving the system

US Army Corps of Engineers • Engineer Research and Development Center

Combining Assessments and Resources with Existing Frameworks

UNCLASSIFIED

20

Future Work

- Learning and data availability is enhanced through collaborations (organizations, academics, government, etc.) (McLean and Becker 2019)
- Need more understanding of adaptation (adaptive capacity) between disruptions
- "Hybrid" approaches is often cited to provide optimal benefits for the resilience of the entire system; need formal understanding
- More research is warranted to draw connections between resilience concepts and inland waterway processes (Echevarria-Doyle and Chambers 2019)

Five strategies to overcome barriers to climate and extreme weather adaptations (McLean and Becker 2019)

22

Questions?

Katherine.F.Chambers@usace.army.mil

US Army Corps of Engineers • Engineer Research and Development Center