Mesh Networks for Port Terminal Operations

Chip Yager
Director of Operations
Motorola Mesh Networks Product Group
chip.yager@motorola.com
What is a Mesh?
Mesh Rate and Capacity

High site based network architectures trade “Range for Rate”
Most devices at non-Peak data rates - Lost Efficiency & Capacity!

All channels and devices operate at Peak data rates - Maximum Efficiency & Capacity!
Benefits of a Wireless Mesh

- Better Data Speeds
 Since clients are closer to access points, they can use higher data rates

- Lower Power Consumption
 Wireless devices use batteries. By using nearby, low power access points less transmit power is used

- Better Coverage
 Low site design allows for dense coverage without shadows
 Multi-hopping gets around obstacles

- Lower Backhaul or Deployment Costs
 Since fewer sites need physical connections, less fiber is run. Put sites where you need them, not where you have connections
Motorola’s Two Mesh Technologies

MEA
(Mobility Enabled Access)

- Proprietary protocol optimized for mobility and high RF interference mitigation.
- Designed for critical communications.

Products: 2.4GHz MEA MotoMesh

Wi-Fi
(802.11 a/b/g)

- Industry standard wireless data communication protocol.
- Works with off-the-shelf computers and other Wi-Fi devices.

Products: HotZone Duo

All Motorola products use MeshConnex routing protocol to efficiently route traffic.
Unique MEA Capabilities

- **RF Resiliency**
 - Multiple channels and multi-hopping provide connectivity in extremely harsh radio environments
 - *Glasgow, Scotland* – City traffic lights controlled through MEA after WiFi proved unreliable.

- **Client Meshing**
 - Subscribers hop through each other to extend network where there is no coverage
 - *Rotterdam, Neth. Ports* – Used for communication in dock area – constantly changing environment with 50’ walls of containers.

- **Ad Hoc Client Communication**
 - Subscribers are capable of creating a network anywhere
 - *Ripon, CA* – Rapid deployment of network in areas outside of city.

- **Mobility**
 - Seamless Handoffs allow uninterrupted data at speeds up to 250 mph
 - *Medford, Oregon* - Video to and from Police helicopters

- **Non-GPS Positioning**
 - Time of Flight measurements provide accurate location data
 - *Buffalo, MN* – Police vehicle position feeds CAD system to ensure fast response.
Case Study: ECT Hanno Terminal – Rotterdam, Neth.

Problem:
- Had 19.2Kbps frequency hopping solution
- Coverage problems, low bandwidth and low mobility through small site
- Needed solution for EuroMax port

Proposal:
- MEA 2.4 network 5 AP, 22 VMMs
- IAP’s on 45m light posts

Result:
- Solid operation for three years
- 300 Kbps throughout site

MEA technology chosen for EuroMax
Case Study: Nanjing River Port – Nanjing, China

Problem:
- Wanted broadband system to support dispatch to transfer vehicle communications over 1 km²
- Trial system for SCT & SPCC

Proposal:
- MEA 2.4 network 12 AP, 40 subscriber units.

Result:
- In operation since June 2006
- Excellent coverage and performance
- 100 Kbps throughout site

MEA chosen as preferred technology by Shanghai Port Association
Case Study: Georgia Ports Authority

Problem:
- Need broadband network to backhaul RFID and Satellite Positioning Detection System (PDS)
- Knew 2.4 WiFi was difficult in high RF noise, multi-path environment
- Competitive solutions called for as many as 50 APs over 2 mi²

Proposal:
- MotoMesh 2.4/4.9 Infrastructure
 - 15 AP’s and 120 VMM’s
 - 2.4 WiFi system supports legacy devices

Current Status:
- Going live October 2007