Advanced Technology in Terminal Design

Larry W. Nye
Sr. Vice President
Moffatt & Nichol
Moffatt & Nichol

“A Firm Focused on the Waterfront”

• Over 60 Years Experience
• Offices in North America, Europe and Latin America
• Port & Intermodal Planning
• Terminal Planning & Analysis
• Port Financial Analysis
• Port Infrastructure Design
• Dredging & Reclamation
• Marinas
• Environmental
• Urban Waterfronts
• Bridge & Highway Design
“The real driving force behind globalization is… the declining cost of international transport.”

The Journal of Commerce

“The Box That Changed the World”
Since its inception, the container shipping industry has strived to increase the efficiency of goods movement:

- Larger vessels
- Larger terminals
- Computers & software
- Elimination of paper documentation
- The internet
- Container handling automation
Efficiency

• What is efficiency?
 – Capacity
 • TEU’s per hectare
 • TEU’s per annum
 – Productivity
 • Containers moved per hour
 • Man-hours per container moved
 – Cost (terminal)
 • Land
 • Infrastructure
 • Equipment
 • Computers and software
 • Labor
Presentation Outline

• Automated terminals
• Integrated terminal design
• Simulation as a design decision-making tool
Automated Terminal

• The “automated terminal” is just the latest step in the evolution of containerization

• What does “automated” mean?
 – Robotics
 • Automated yard cranes
 • Automated horizontal transport
 – Decisions are made by the Terminal Operating System
 • Instead of planning ahead, the automated terminal can make decisions at the last minute
Efficiency

• The goal of an automated terminal is to strike the best balance between:
 – Capacity
 – Productivity
 – Cost

• “Automation” is not the goal
End-Loaded Design Separates Vessel and Gate Traffic

Perpendicular, end-loaded
- separation of waterside and landside traffic
- simplicity in paths, minimum travel distances
- best if automated transfer waterside is contemplated
Side-Loaded Causes Traffic to Mix

Parallel, side loaded (ala Pusan New Port)
Mixed waterside and landside traffic
Not compatible with automated waterside transfer
“Automated” Container Terminals

- ECT, Rotterdam, Netherlands
- CTA, Hamburg, Germany
- APMT, Norfolk, USA
- Antwerp
- Abu Dhabi
- London Gateway
- Many others under consideration
A State-of-the-Art Automated Terminal

• CT-A, Hamburg, Germany

- Dual trolley quay cranes
- Semi-automated main trolley
- Unmanned secondary trolley serving automated transport vehicles
- Automated transfer by AGV’s
- Automated storage and retrieval
- Nested RMG’s
- Semi-Automated landside truck delivery
- Fully Automated from Quay Cranes to Trucks
Automated Horizontal Transfer

- **AGV’s**
 - Unmanned, diesel powered, rubber tired, bottom-supported container

- **Shuttle/straddle carriers**
 - Unmanned, diesel powered, rubber-tired, top-lifted container
Cost is Driving Terminal Automation

- Rising terminal development and labor costs are driving terminals to automate.
- On a recent US West Coast terminal study, it was determined that a new terminal could not be competitive with existing terminals unless it was automated.
Example: Cost per Lift - US West Coast

Annual Cost per Vessel Lift with Full Automation
Infrastructure @ 6.5% 30 yrs
Equipment @ 6% 17 yrs

- Infrastructure (ann. pmt.)
- Equipment (ann. pmt)
- Equipment O&M
- Labor (annual)
- Total

<table>
<thead>
<tr>
<th>Manned</th>
<th>Semi-automated yard cranes</th>
<th>Automated Yard Cranes & Horiz. Transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top-Pick / RTG</td>
<td>Strad</td>
<td>RTG</td>
</tr>
<tr>
<td>$47</td>
<td>$54</td>
<td>$31</td>
</tr>
<tr>
<td>$26</td>
<td>$43</td>
<td>$30</td>
</tr>
<tr>
<td>$126</td>
<td>$120</td>
<td>$109</td>
</tr>
<tr>
<td>$220</td>
<td>$231</td>
<td>$189</td>
</tr>
<tr>
<td>$47</td>
<td>$54</td>
<td>$31</td>
</tr>
<tr>
<td>$26</td>
<td>$43</td>
<td>$30</td>
</tr>
<tr>
<td>$126</td>
<td>$120</td>
<td>$109</td>
</tr>
<tr>
<td>$220</td>
<td>$231</td>
<td>$189</td>
</tr>
</tbody>
</table>
Top Pick and Strad Could Not Meet Capacity Goal

Annual Cost per Vessel Lift with Full Automation
Infrastructure @ 6.5% 30 yrs
Equipment @ 6% 17 yrs

- Top-Pick / RTG
- Strad RTG Side Loaded RMG
- RTG
- Side Loaded RMG
- End Loaded RMG

- Infrastructure (ann. pmt.)
- Equipment (ann. pmt)
- Equipment O&M
- Labor (annual)
- Total
RTG and Side-Loaded RMG Could Not Meet Vessel Productivity Goal Due to Conflict with Gate Traffic

Annual Cost per Vessel Lift with Full Automation
Infrastructure @ 6.5% 30 yrs
Equipment @ 6% 17 yrs

Infrastructure (ann. pmt.)
Equipment (ann. pmt)
Equipment O&M
Labor (annual)
Total
Only End-Loaded RMG’s with Automated Horizontal Transport Could Meet all Goals

Annual Cost per Vessel Lift with Full Automation

- **Infrastructure @ 6.5% 30 yrs**
- **Equipment @ 6% 17 yrs**

<table>
<thead>
<tr>
<th>Top-Pick / RTG</th>
<th>Strad</th>
<th>RTG</th>
<th>Side Loaded RMG</th>
<th>End Loaded RMG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure (ann. pmt.)</td>
<td>$20</td>
<td>$29</td>
<td>$23</td>
<td>$278</td>
</tr>
<tr>
<td>Equipment (ann. pmt)</td>
<td>$47</td>
<td>$54</td>
<td>$35</td>
<td>$189</td>
</tr>
<tr>
<td>Labor (annual)</td>
<td>$4</td>
<td>$5</td>
<td>$42</td>
<td>$109</td>
</tr>
<tr>
<td>Total</td>
<td>$71</td>
<td>$93</td>
<td>$41</td>
<td>$416</td>
</tr>
</tbody>
</table>
A Recent Terminal Planning Project

- **Capacity**
 - 3 million TEU’s per year annual capacity
 - 35% rail, 65% gate, 0% transshipment
 - 3-12,000 TEU vessel calls per week
 - 11,000 moves per vessel call in 96 gross hours
 - 125 hectares, 1,300 m quay

- **Productivity**
 - **Waterside**
 - Vessel 160 net container moves per hr x 3 vessels = 480 mph
 - **Landside**
 - Gate 420 lifts per hr peak day
 - Rail 140 lifts per hr peak day
 - Total 560 moves per hr
 - Horizontal transport to transition from manned bomb carts to automated

- **Cost**
 - Competitive with existing terminals
 - Lowest cost per lift
A Recent Terminal Planning Project

• Questions to be answered by simulation;
 – How many and what kind of quay cranes?
 – How much stacking capacity?
 – How many automated stacking cranes and what size stacks?
 – What kind of horizontal transport? How many units?
 – How many rail tracks and how many rail loading cranes?
 – Total cost per lift?
Inventory Simulation

• Tests rail and vessel schedules to determine range of container storage required

• Inventory simulation showed that;
 – Vessel schedule has a profound effect on storage requirement for intermodal cargo
 – At least 60,000 TEU’s of storage capacity will be required
Intermodal Inventory Simulation - Worst Case
Vessel Schedule

Vessel and Train Schedule – Worst Case

Vessel Schedule

Trains

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

Vessel and Train Schedule – Worst Case
Intermodal Inventory Simulation - Best Case
Vessel Schedule

Vessel and Train Schedule – Best Case

Vessels

<table>
<thead>
<tr>
<th>Day</th>
<th>Vessel 1</th>
<th>Vessel 2</th>
<th>Vessel 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuesday</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thursday</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friday</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturday</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunday</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trains

<table>
<thead>
<tr>
<th>Day</th>
<th>Train 1</th>
<th>Train 2</th>
<th>Train 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuesday</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Wednesday</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Thursday</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Friday</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Saturday</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Sunday</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Intermodal Inventory Simulation - Container Population

<table>
<thead>
<tr>
<th></th>
<th>Maximum Number of Containers (TEU's)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Buffer</td>
</tr>
<tr>
<td>Best Case</td>
<td>6709</td>
</tr>
<tr>
<td>Worst Case</td>
<td>13520</td>
</tr>
<tr>
<td>Percent Increase</td>
<td>102%</td>
</tr>
</tbody>
</table>

Weekly Buffer Population Fluctuation

Best Case

<table>
<thead>
<tr>
<th></th>
<th>Boxes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td></td>
</tr>
</tbody>
</table>

- **Total**
- **WB**
- **EB**

![Graph showing weekly buffer population fluctuation](image-url)
Quay Crane Simulation

• Showed that tandem lift or dual trolley cranes would be required to meet vessel productivity goal
• Showed that tandem lifts would create extreme peaks and valleys in productivity and that the transport and yard crane systems would have trouble keeping up
• Recommended single-trolley tandem lift, quay crane initially working with bomb carts
• Dual trolley, tandem main and single secondary working with AGV’s ultimately
Five QC Configurations Were Simulated

1. Single trolley
 Single lift
 ST, S
 Base Case

2. Single trolley
 Tandem lift
 ST, T

3. Dual trolley
 Single lift, Single lift
 DT, SS

4. Dual trolley
 Tandem lift, Single lift
 DT, TS

5. Dual trolley
 Tandem lift, Tandem lift
 DT, TT

1. = Main trolley
2. = Secondary trolley
Simulated QC Layout

22 containers

Center of lanes under portal

Center of lanes under backreack

Unit: meters

22 containers

25

42

29

55

10

10
Quay Crane Relative Net Productivities

- Single-trolley tandem showed 33% increase over single-trolley single
Quay Crane Relative Net Productivities

- Dual trolley single lift showed 15% increase over single trolley single
• A common complaint of tandem lift cranes is that “the yard can’t keep up”

• So, a fleet of 5 quay cranes was simulated to test the effect of tandem lifts on the yard crane and transport fleets
15 Minute Interval, 5 Cranes Working, Scenario 2. “ST, T”

- Peak rate = 260 mph = 52 mph/QC
- QC fleet max/min = 1.55

Containers Grounded Per 15 Min - Single Trolley
Sum of Five QCs

- Scenario 1 - 50%
- Scenario 6 - 20%
- Scenario 4 - 0%

Time Index (15 Min)
Num Containers Grounding
15 Minute Interval, 5 Cranes Working, Scenario 5. “DT, TT”

- Peak rate = \(348 \text{ mph} = 70 \text{ mph/QC} \)
- QC fleet max/min = 1.43

Graph: Containers Grounded Per 15 Min - Main Trolley Tandem, Secondary Trolley Tandem

- Time Index (15 Min)
- Num Containers Grounding
 - Sce 2 - 50%
 - Sce 7 - 20%
 - Sce 5 - 0%

Diagram:
- Dual trolley
- Tandem lift, Tandem lift
- DT, TT
• Peak rate = 260 mph = 52 mph/QC
• QC fleet max/min = 1.34

Containers Grounded Per 15 Min - Main Trolley Tandem, Secondary Trolley Single
Sum of Five QCs

Time Unit (15 Min)
Quay Crane Simulation

• The dual trolley crane with tandem lift main trolley and automated single lift secondary trolley;
 – Met vessel productivity goal
 – Presented the ASC and transport systems with a manageable flow of work
Quay Crane Simulation Conclusions

- **Tandem lifts**
 - Can provide high productivities (50% tandem lifts result in 33% improvement)
 - Adding a secondary trolley without tandem lifts can improve crane productivity by 15%
 - Tandem lifts causes extreme peaks and valleys
 - It is very difficult for the transport and yard systems to deal with and adjust to those peaks
 - Automated transport and stacking systems need a steady supply of work

- **Secondary trolley (st)**
 - A secondary trolley working in the backreach is preferred for automated transport
 - In terms of pure net productivity, tandem lift is higher
 - In terms of serving the transport and yard systems, single lift, dual trolley is favored
 - If start-up mode is single-trolley, tandem lift, provision for a single-lift secondary trolley is advised
Yard Crane Simulation

- **Single-block simulation**
 - What can each crane/block do?

- **Fleet of stacks**
 - What can “the system” do?
End-Loaded ASC Model
Yard Crane Simulation

- Showed that twin ASC’s could achieve 16 moves per hr landside and 18 moves per hr waterside
- Showed that 40 ASC stacks (80 cranes) would be required to meet the peak landside demand of 520 moves per hr
 - $40 \times 16 \times 0.90 \text{ maint. factor} / 1.15 \text{ unbalanced workload factor}$
Railyard Simulation

• Rail Yard simulation showed;
 – That 8, 1175m loading tracks would be required
 – 6 rail loading RMG’s would be required
 – Train turn times
 – Track and crane utilization
The Result

- The plan that emerged from the planning process
 - Three berths with up to 14 dual trolley quay cranes with;
 - tandem-lift main trolley and automated single-lift secondary trolley or
 - single-lift main and automated secondary trolleys
 - 3 million TEU annual capacity
 - Automated waterside transport using AGV’s, 4-5 AGV’s per quay crane
 - 40 end-loaded ASC stacks with twin cranes, 8-wide by 5 high by 40 TEU long
 - 6 rail-loading cranes spanning 8 tracks each, 3-4 drivers per rail crane
The Plan That Emerged

• (Looks something like this)
• This planning project required analysis of all aspects of the terminal operation
 – Vessel, gate and rail schedules, traffic projections and resultant container populations
 – Vessel productivity
 – Quay crane configurations
 – Horizontal transport alternatives
 – Yard crane fleet configuration
 – Railyard configuration and sizing
 – Understanding of terminal operating system rules
 – Understanding of unique local labor and safety rules
Integrated Terminal Design

- Integrated design of an automated terminal includes achieving the best balance of the clients;
 - Capacity goals
 - Performance goals
 - Financial goals
 - Infrastructure
 - Equipment
 - Labor
 - Maintenance
 - Operating systems
Integrated Terminal Design

• In fact, the design of a successful automated terminal requires the cooperative effort of a core team of experts from each discipline;
 – Management
 – Finance
 – Operations
 – IT Systems
 – Equipment (specification)
 – Civil / infrastructure
 – Maintenance
Integrated Terminal Design

Terminal Planning Process

Design & Construction Process

Implementation Process

Core team of disciplines to be kept through the project

Supplementary expertise and resources added at critical stages

Tasks and Teams

Progress
Conclusions

• The container shipping and port business constantly strives to reduce the cost of goods movement through efficiency

• Automated container handling is a way to increase efficiency

• Terminal automation technology has reached a level of maturity that makes it a viable option for any major project

• No two terminals are the same, so a variety of solutions are seen
Thank You